CST272—ASP.NET Validation Page 1

1 Input Validation
CST272—ASP.NET

2 ASP.NET Validation Controls
+ Validation server controls are used to compare input controls (e.g. TextBoxes), or parts
of controls, to a “validation rule™:
— Rule may require that the control contain any value, or require a specific form of data
such as alphabetical or numeric.
— The rule may specify that the data must be contained within a range of two values.

— The rule may be very specific and require formatting such as uppercase letters and
periods.

3 Validation Types (Page 1)

* Types of validation include :

— Required Field Input Validation—to ensure that a value has been entered (field not
blank)

— Data type validation—usually for numeric data to ensure that the data is numeric
— Range input validation—to validate that a numeric entry falls within a required range

4 Validation Types (Page 2)

* Types of validation include (con.):
— Comparison validation—usually for numeric data to validate that it is equal to,
greater than, less than, etc. another value (literal or variable)
— Pattern validation—for string data to ensure that the characters follow a
predetermined pattern, e.g. telephone number or e-mail address

5 The Validation Controls (Page 1)
» The ASP.NET validation server controls are:
— RequiredFieldValidator—Makes sure a form field is not left blank
— CompareValidator—Compares field with other values or values of other controls
using relational operators (=, >, >=, <, <=, < >)
— RangeValidator—Makes sure a field's value falls between a given range (two numeric
literals)

6 The Validation Controls (Page 2)
» The ASP.NET validation server controls are (con.):
— RegularExpressionValidator—Evaluates the data against a string pattern

— CustomValidator—Evaluates data against a custom criteria as defined in a
programmer-defined method

7 The Validation Controls (Page 3)
« Validation control inheritance:

— Most validation controls inherit directly from the BaseValidator class which inherits
from class Label

= Therefore a custom error message displayed using a BaseValidator “is a” Label

CST272—ASP.NET Validation Page 2

10

11

13

14

— Validation controls that perform comparisons inherit directly from
BaseCompareValidator base class which inherits from BaseValidator class

The Validation Controls (Page 4)
« Validation controls perform validation on the client-side ...
— They generate JavaScript code in the HTML document which performs the validation
processing

The Validation Controls (Page 5)
+ Each validation control only can be used for validating a single input object
» However more than one validation control may be applied to the same input object,
eg.
— To perform both required field input validation as well as comparison validation on a
single input object, e.g. the same TextBox, requires two validation controls

Validation and the “web.config” File (Page 1)

+ Since Visual Studio 2015, it has been necessary to add a key value in the web.config file
so that validation controls work correctly

+ Without this ValidationSettings key, the browser window will crash when the Button
control is clicked

Validation and the “web.config” File (Page 2)

* Format:
<configuration>

<appSettings>
<add key="ValidationSettings:UnobtrusiveValidationMode"
value="None" />
</appSettings>
</configuration>

Common Properties (Page 1)
» Some of the most important properties for the validation controls are:
— ControlToValidate—specifies the control on the form that is validated by this
validation control
— CssClass—a validation CSS style class variable can be created which the CssClass
property points to the style and handles formatting
= “CssClass” is the ASP.NET equivalent to the HTML's Class attribute

Common Properties (Page 2)
» Some of the most important properties (con.):
— Display property—how it saves space for the message:
= Dynamic—space for the validation message is added to the page dynamically only
if validation fails
= Static—space for the validation message is allocated in the page layout whether

CST272—ASP.NET Validation

15

19

20

24

26

there is an error, or not (the default)
= None—validation message is not displayed (if using a “summary window" instead
of individual messages)

Common Properties (Page 3)
» Some of the most important properties (con.):

— ErrorMessage—the actual text message that is displayed if the value of the control is
in error (extends from Text property of a Label)

The RegularExpressionValidator

* The asp:RegularExpressionValidator server control compares user input to a string
pattern for validation

* The control’s ValidationExpression property compares values to a “regular expression”

— A Regular Expression is a rule (in the form of a string) that describes the value using
a language that describes one or more groups of characters
* Built-in regular expressions may be selected from the Regular Expression Editor
— Also used for creating Custom expressions

Some ValidationExpression Property Examples
* Library of sample codes:
Internet E-Mail Address
AW ([-+ N\w+)* @\w+ ([\w+) \\w+([-\w+)*
Internet URL
http://(Nw-]+\)+D\w-]+(/\w- ./?%&=]*)?
US Phone Number
\d{3}-\d{3}-\d{4}
US Zip Code
\d{5}(-\d{4})?

The CompareValidator
» The asp:CompareValiditor server control validates using relational operators (=, >, >=,
<, <=, <>)
* Properties unique to the control are:
— Operator—the relational operator (as a word):
= Equal, NotEqual, GreaterThan, GreaterThanEqual, LessThan, LessThanEqual,
DataTypeCheck

— ValueToCompare—value used by the Operator property for the comparison
— Type—the data type:
= String, Integer, Double, Date, Currency

The ControlToCompare Property

* To use the asp:CompareValiditor control to compare an input object to the value in
another input object:
— Set the ControlToCompare property to the input object to which this object is being

Page 3

CST272—ASP.NET Validation

27

29

31

32

33

compared
— Set the Operator property as usual

— Set the ValueToCompare property to zero (0) which effectively disables it
(ControlToCompare value then takes precedence)

The RangeValidator Control

» The asp:RangeValiditor control validates that user input is between a lower and upper

range of values
* Properties unique to this control are:
— MaximumValue—the highest value in the range
— MinimumValue—the lowest value in the range
— Type—the data type (same as asp:CompareValidator):
= String, Integer, Double, Date, Currency

The Page.IsValid Property
* Each time the Form is submitted the Page.IsValid property is updated
— Indicates if all validation controls on the page are valid
* The following checks if the entire Form is valid:
if (Page.IsValid)
{
LabelMessage.Text = "Result: Valid!";
}

The CustomValidator (Page 1)
* If none of the other validation controls are helpful, the asp:CustomValidator control
lets the programmer write the validation code
— Possibilities are virtually endless
+ Allows for validation on either server or client side
— To specify a client script (e.g. written in VBScript or JScript) within the “.aspx”
document, enter its name as the ClientValidationFunction property

The CustomValidator (Page 2)

* Most properties are exactly the same as for other validation controls, e.g.
— ControlToValidate, ErrorMessage, etc.

+ Double-click on the CustomValidator control while in “Design” view to create new
event handler method for writing the validation algorithm
— Handles the ServerValidate event

The ServerValidate Event (Page 1)

» Associated with a CustomValidator object
« Will fire whenever a postback occurs for a page that contains the CustomValidator
control

* Its two arguments are:
object source

Page 4

CST272—ASP.NET Validation Page 5

34

35

36

37

38

39

— The CustomValidator object
ServerValidateEventArgs args
— An object with two properties, Value and IsValid

The ServerValidate Event (Page 2)
* Format:

protected void methodName (object source, ServerValidateEventArgs args)
* Example:

protected void CustomValidatorDay_ServerValidate (object source,
ServerValidateEventArgs args)

The Value Property (Page 1)

* A property of the args parameter associated with the ServerValidateEvent of the
CustomValidator control

* The Value property contains the value to be validated (from a TextBox or other input
object specified as the ControlToValid) returned as type string

+ Like all other strings, the Length property of the Value property is the number of
characters that the object contains

The Value Property (Page 2)
* Format:

args.Value
* Example:

String day = args.Value;

The IsValid Property (Page 1)
* A property of the args parameter associated with the ServerValidateEvent of the
CustomValidator control
+ The IsValid property is assigned a boolean value to indicate if the validation algorithm
has determined the input value to be valid or not:
— True—the result of the algorithm is valid
— False—the result of the algorithm is invalid so that the control's ErrorMessage will be
displayed
The IsValid Property (Page 2)
* Format:
args.IsValid
» Example:
if (day == "mon")
args.IsValid = true;
else
args.IsValid = false;

The ValidateEmptyText Property
* For CustomValidator control, a boolean property that indicates whether or not empty

CST272—ASP.NET Validation

41

42

43

text in the TextBox or other input object should be validated
* Values:
— True—the TextBox or other input object is validated to determine if it is empty (is
invalid if it is empty)
— False—the TextBox or other input object is not validated to determine if it is empty

The CausesValidation Property (Page 1)
* To disable validation for a particular control like a Button, set the CausesValidation
property for that control to False
— For example a “Cancel” or “Clear” Button might be used to close or clear a Form and
bypass the validation check
— Default value is True

The CausesValidation Property (Page 2)

* Format:
<asp:ControlType ... CausesValidation = "True/False" >
» Example:
<asp:Button id="ButtonCancel" runat="server"
Text="Cancel"

CausesValidation="False" > </asp:Button>

The ValidationSummary Control (Page 1)
* The ValidationSummary control summarizes in one location the error messages from all
validators on a Web page ...
— In a list somewhere on the page
— In a separate "alert box” (message box)
* Display of each of the individual validation controls usually should be turned off
— Set their Display properties to the value "None”

The ValidationSummary Control (Page 2)
* Properties:
— DisplayMode—error messages displays as a list (List) without bullets, a bulleted list
(BulletList), or a single paragraph (SingleParagraph)
— ShowSummary—shows the entire list within the control itself (default is True)
— ShowMessageBox—displays errors in a separate alert box (default is False)
— HeaderText—heading message displayed prior to the error listing

Page 6

