CST242—Strings, Characters and Regular Expressions Page 1

1 Strings, Characters and Regular Expressions
CST242

2 char and String Variables
* A char is a Java data type (a primitive numeric) that uses two bytes (16 bits) to store
one text character ...

* char literals enclosed in single quotes
* E.g. char anylLetter = 'L}

* A String (object or reference) is a series of characters treated as a unit ...
« String literals enclosed in double quotes
* E.g. String firstName = "Charles";

3 Character Representation
* All characters (whether in a char or a String) are represented as a binary integer value
between zero (0) and 65,535
* Requires two bytes (16 bits) of storage in RAM or on a disk ...
* The highest 76 digit binary numberis 11111111 11111111 or 65,535
» Written in hexadecimal as FFFF
* The integer storage values are known as Unicode (formerly ANSI—which was one
byte)
4 The Unicode Table
» Complete Unicode specification can be found at:
* The letter "A" is:
* 65 in decimal
+ 0000 0000 0100 0001 in Unicode binary (0041 in hexadecimal)
* The letter "a" is:
* 97 in decimal
+ 0000 0000 0110 0001 in Unicode binary (0061 in hexadecimal)

5 The StringBuilder Class (Page 1)
* A class that provides functionality for building and concatenating strings into a single
string

» StringBuilder class is located in the java.lang package (does not need to be imported)
» Documentation located at:

6 The StringBuilder Class (Page 2)
* The primary methods of class StringBuilder are:
* append—concatenates String (or some other type since the method is overloaded
and converts it to String) to the end of the StringBuilder object
* insert—inserts String (or some other type converted to String) within the
StringBuilder object

http://www.ssec.wisc.edu/~tomw/java/unicode.html
https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuilder.html

CST242—Strings, Characters and Regular Expressions Page 2

10

11

12

« delete—deletes the specified elements from a location within the StringBuilder
object

Instantiating StringBuilder Objects (Page 1)
* There are four constructors including:
StringBuilder stringBuilderObject = new StringBuilder();
* Creates a StringBuilder object with a capacity of 16 elements (initially empty)
StringBuilder stringBuilderObject = new StringBuilder(initialCapacity);
* Creates empty StringBuilder with capacity specified by parameter initialCapacity

Instantiating StringBuilder Objects (Page 2)
* There are four constructors including (con.):
StringBuilder stringBuilderObject = new StringBuilder(object);

* Creates a StringBuilder with the initial value of the specified object plus 16
additional empty elements

The append Method (Page 1)
* StringBuilder method that concatenates its argument to the end of StringBuilder
object
* The data is converted to a String before the append operation takes place
* Therefore the argument type may be String or any of the following:
* boolean, char, char[] (array), float, double, short, int, long, Object, etc.

The append Method (Page 2)
* Format:

stringBuilderObject.append(object);

* object is the element added to the end of the StringBuilder object
* Example:

output.append("The charis");

output.append(c1);

The insert Method (Page 1)

* StringBuilder method of that inserts the second argument into StringBuilder object

* The first int argument indicates the index before which the data is to be inserted

* Like append(), the data is converted to a string before the insert operation takes place
* Therefore the argument type may be String, but also may be boolean, char, char(]

(i.e a char array), float, double, short, int, long, or Object
The insert Method (Page 2)
* Format:
stringBuilderObject.insert(index, argument);

* index is the location before which the argument value is to be inserted
* Example:
output.insert(10, s2);

CST242—Strings, Characters and Regular Expressions Page 3

13

14

15

16

17

18

19

The delete Method
« StringBuilder method that deletes subsequence of characters from start to end
(exclusive) in the StringBuilder object
* Format:
stringBuilderObject.delete(start, end);

* Example:
output.delete(0, output.length());
* This example deletes all characters from the StringBuilder object

The length Method
* Like the String class, class StringBuilder has a length method
* Returns an int as the number of characters in the string builder
* Format:
stringBuilderObject.length()

The capacity Method
* The capacity, which is an int returned by the capacity method, is always greater than or
equal to the length
» Automatically expands as necessary to accommodate additions to the string builder
* Format:
stringBuilderObject.capacity()

The deleteCharAt Method
» StringBuilder method that deletes the char located at the index in the string builder
object
* Format:
stringBuilderObject.deleteCharAt(index);
* Example:
output.deleteCharAt(0);
* This deletes the 15t char of the string builder object

The replace Method (Page 1)

» StringBuilder method that replaces the specified characters in a string builder object
* Format:
stringBuilderObject.replace(start, end, stringObject);

The replace Method (Page 2)
* Example:
output.replace(2, 4, "Hello");
* This example replaces the 3™ through the 4" char’s of the string builder object
with the string "Hello”
The reverse Method
» StringBuilder method that reverses sequence of characters in the string builder object

CST242—Strings, Characters and Regular Expressions Page 4

* Format:
stringBuilderObject.reverse();

20 The setCharAt Method
» StringBuilder method that replaces a single character in the string builder object
* Format:
stringBuilderObject.setCharAt(index, char);
* Example:
output.setCharAt(8, 'G');
* This example replaces the 9t char of the string builder object with the character 'G'

21 The toString Method (Page 1)
» StringBuilder has a toString() method that overrides that of Object and returns a string
representation of the object
« Effectively the character sequence within the StringBuilder object

22 The toString Method (Page 2)

* Format:
stringBuilderObject.toString()

* Examples:
String s2 = output.toString();
* Return type of method is String
System.out.println(output.toString());
JOptionPane.showMessageDialog(null, output.toString());

24 The String Class (Page 1)
« String variables are reference variables (objects of class String) ...
* Represent multiple locations in RAM (the characters plus its methods)
* The String class is located in the java.lang package, so it does not need to be imported

25 The String Class (Page 2)

» String objects contain methods used for manipulating them ...
+ Java methods for processing strings include techniques for finding/comparing
characters, extracting substrings, modifying upper/lower case, etc.
* Documentation located at:

26 Instantiating Strings (Page 1)
» Java Strings may be declared using the same format as primitive variables (declares an
un-instantiated String object):
* Format:
String variableName;

* Or a string may be instantiated formally using object-oriented notation with a
constructor call:

* Format:

https://docs.oracle.com/javase/9/docs/api/java/lang/String.html

CST242—Strings, Characters and Regular Expressions Page 5

27

28

29

31

32

33

String variableName = new String();

Instantiating Strings (Page 2)
* There are 11 constructor methods for instantiating String objects
* Example with no arguments:

String middleName = new String();

Instantiating Strings (Page 3)
* Example with String arguments:
String lastName = new String("Jenson");
* Equivalent to: String lastName = "Jenson";
+ Example with String variable argument (actually the same constructor as above):
String lastName = new String(s1);
* Equivalent to: String lastName = s7;

Instantiating Strings (Page 4)
* Other String constructors accept char arrays, byte arrays, StringBuffers and
StringBuilders

Methods of the String Class
* Used to perform manipulations with or upon the String object
* Formats:
stringVariable.method([arg]1, arg2, ...])
"string".method([arg]1, arg2, ..])
* Some examples:
int stringLength = s1.length();
if (s1.equals("Java")) {...}
int indexLocation = "hello".indexOf(s5);
String subStr1 = s1.substring(12);

The length Method

* A method of the String class that returns an int which is the count of the number of
characters within a String object

* Format:
stringObject.length()
* Examples:

int stringLength = s1.length();
int stringLength = "hello".length();
* The second example returns the integer 5

The charAt Method (Page 1)

» Method of class String that returns a char (one character) from a specific location
within the String object and converts it to a char

* Format:

CST242—Strings, Characters and Regular Expressions Page 6

34

36

37

38

39

stringObject.charAt(index)

* index is an integer (its position) within stringObject starting at zero (0) to one less
than its length

The charAt Method (Page 2)
* Examples:
char letter = s1.charAt(7);
char letter = "hello".charAt(1);
* The second example returns the character 'e'

The equals and equalsignoreCase Methods (Page 1)
* A boolean method of class String that compares its String object to another String to
see if they are identical
* Returns a value of true or false
* The equals method is contained in Object class and inherited by the String class ...
* Overrides the same method of its superclass Object

The equals and equalsignoreCase Methods (Page 2)

* The equalslgnoreCase method ignores the upper/lower case of the letters compared ...
* Internally in the ALU, the processor changes the 77th Unicode position to a 1 if
necessary
* Example:
« "H" in binary: 00000000 01001000
*"h" in binary: 00000000 01101000

The equals and equalsignoreCase Methods (Page 3)
* Formats:
stringObject.equals(String)
stringObject.equalsignoreCase(String)

* The String argument may be a String variable or String literal to which the
stringObject is compared

* Examples:
if (s1.equals("Java")) ...
* Equivalent but invalid: if (s1 == "Java") ...
if (s2.equalslgnoreCase(s3)) ...

The equals and equalsignoreCase Methods (Page 4)

* Why is it not possible to use "is equal to” operator (==) with Strings?

» String is a class and so Strings are objects

* When used with two objects “is equal to” operator asks if the two objects are identical,
that is do they share same address in memory

* The following (compares addresses) really means “are these two objects the same
String?™:

if (s1 == "Java")

CST242—Strings, Characters and Regular Expressions Page 7

40 String Comparison Processing
» Made character by character, from left to right, in accordance with the computer's
collating sequence
* Unicode (ANSI, ASCII), EBCDIC or some other code

* The binary value of the leftmost character of one factor is compared to the binary
value of the leftmost character of the other

« If they are equal, the comparisons continue with each succeeding character position

4 String Comparison Examples
* Example 1:
* "java"
* Binary: 0110 1010 (106) / 0110 0001 (97) ...
* "jello”
* Binary: 0110 1010 (106) / 0110 0101 (101) ...
* Example 2:
* "hello"
* Binary: 0110 1000 (104) / 0110 0101 (101) ...
* "Hello"
* Binary: 0100 1000 (72) / 0110 0101 (101) ...

43 The compareTo and compareTolgnoreCase Methods (Page 1)
» Methods of String class that compare the String object to another String to see if the
object is:
* Greater or lesser than the String argument to which it is compared

* Equal to the String argument to which it is compared (alternative to equals and
equalsignoreCase)

44 The compareTo and compareTolgnoreCase Methods (Page 2)
* The return values is an int as follows:

* A positive integer if the String object is greater than the “compare to” String
argument

* A negative integer if the String object is less than the “compare to” String argument
» Zero (0) if the String object is equal to the “compare to" String argument
* The compareTolgnoreCase method ignores the case of the letters compared

45 The compareTo and compareTolgnoreCase Methods (Page 3)
* Formats:
stringObject.compareTo(String)
stringObject.compareTolgnoreCase(String)

* The String may be a String variable or String literal to which the stringObject is
compared

* Examples:
if (s1.compareTo("Java") > 0) {...}

CST242—Strings, Characters and Regular Expressions Page 8

47

48

49

50

52

« Equivalent but invalid: if (s1 > "Java")
if (s2.compareTolgnoreCase(s3) < 0) {...}

The regionMatches Method (Page 1)
* A boolean method of the String class that compares portions of two strings to
determine if they are identical
* Returns a value of true or false

» Arguments specify where in the strings the comparison begins and for how many
consecutive characters

The regionMatches Method (Page 2)
* Format 1:

stringObject.regionMatches(startindex, compareString, startindexCompareString,
numberOfChars)

* startindex is the starting location in the stringObject

* The compareString may be a String variable or String literal to which the
stringObject is compared

» startindexCompareString is location in compare String argument where the
comparison begins

* numberOfChars is number of characters to compare

The regionMatches Method (Page 3)
* Format 2:

stringObject.regionMatches(true|false, startindex, compareString,
startindexCompareString, numberOfChars)

« If truelfalse literal is specified as the first argument, comparison is case insensitive
* If the value is true, comparison is case insensitive
* All other arguments are identical to Format 1

* In both formats, if String is shorter than numberOfChars of characters to be
returned, reads addition garbage characters in RAM beyond the String object

The regionMatches Method (Page 4)
* Examples:

if (s1.regionMatches(2, s2, 2, 5)) ...

if (s3.regionMatches(true, 2,54, 2, 5)) ...

The indexOf Method (Page 1)
* Returns an int which is index (zero-based integer) of first location of a char or String
within string object
* Returns -1 if the char or String is not found
* Format:
stringObject.indexOf(char|String [, index])
« First argument is character(s) searched for
* Optional index argument is starting location for search

CST242—Strings, Characters and Regular Expressions

53

54

55

57

58

59

* Or begins at start of String

The indexOf Method (Page 2)
* Examples:

int indexLocation = s1.indexOf(s2);

int indexLocation = s3.indexOf('c');

int indexLocation = s4.indexOf("hello");

int indexLocation = s5.indexOf(s6, 12);

The lastindexOf Method (Page 1)
* Returns an int which is the index value of last location of char or String substring
within string object
* Returns -1 if the char or String is not found
* Format:
stringObject |lastindexOf(char | String [, index])
* First argument is the character(s) searched for

* Optional index argument is the starting location for the search (searches before
index) or search starts at end of String

The lastindexOf Method (Page 2)

* Examples:
int lastindexLocation = s1.lastindexOf(s2);

int lastindexLocation = s4.lastindexOf("hello");

(
int lastindexLocation = s3.lastindexOf('c");

(
int lastindexLocation = s5.lastindexOf(s6, 12);

The substring Method (Page 1)
* Returns a String which is the subset of characters from within a string beginning at
specified start location

« If an optional stop location is designated, characters are returned only up to that
location

* Otherwise, all characters to the end of the string object are returned
» Although the characters are returned, the original String object is unchanged

The substring Method (Page 2)
* Format:
stringObject.substring(startindex|, stopIndex])
* startindex is an int which is the location in stringObject where copying of characters
begins
* stopindex is an int which is the location in stringObject where the subset of
characters returned stops
* Optional argument meaning exclusive, only characters up to but not including it

The substring Method (Page 3)
* Examples:

Page g

CST242—Strings, Characters and Regular Expressions Page 10

61

62

64

65

66

String s2 = s1.substring(12);

— Returns all characters from index position 12 to end of string (the 13t character)

String s4 = s3.substring(12, 16);

— Returns all characters from index position 12 up to but not including index position
16 (the 17t character)

The concat Method (Page 1)

* Returns a String which is the concatenation of String argument to the end of String
object

* Used optionally in place of concatenation (+) operator

The concat Method (Page 2)
* Format:
stringObject.concat(String)

* The String argument (String variable or String literal) is the value concatenated to
the stringObject
* Example:

String s3 = s1.concat(s2);
*If s7 = "hello" and s2 = "goodbye" ...
* The concatenated String in s3 = "hellogoodbye"

The toLowerCase Method (Page 1)
* Returns a String with all the alphabetic characters in the String object converted to
lower case ...
+ Adds binary 1 to 77th bit from left
« Effects only alphabetic characters

* Although the lowercase characters are returned, the original String object is
unchanged

The toLowerCase Method (Page 2)
* Format:

stringObject.toLowerCase()

* There are no arguments to the method
» Examples:

String s2 = s1.toLowerCase();

*If s1 = "Hello" ... the String s2 = "hello"

s1 = s1.toLowerCase();

* The variable s1 is updated to store "hello"

The toUpperCase Method (Page 1)
* Returns a String with all the alphabetic characters in the String object converted to
upper case
* Subtracts binary 1 from 77th bit from left
« Effects only alphabetic characters

CST242—Strings, Characters and Regular Expressions Page 11

67

69

70

71

72

93

* Although the uppercase characters are returned, the original String object is
unchanged

The toUpperCase Method (Page 2)
* Format:

stringObject.toUpperCase()

* There are no arguments to the method
* Example:

String s2 = s1.toUpperCase();

+If s1 = "Hello" ... the string s2 = "HELLO"

s1 = s1.toUpperCase();

* The variable s1 is updated to store "HELLO"

The replace Method (Page 1)
* Returns a String with all instances of one specific character within the String object
replaced by specified char or char variable

+ Although the String with the characters replaced is returned, the original String object
is unchanged

The replace Method (Page 2)
* Format:

stringObject.replace(char1/String1, char2/String2)

* char1/String1 are the character(s) being replaced

* char2/String2 are the character(s) replacing the first character(s)
* Example:

String s2 = s1.replace('l', 'Z);

*If s1 = "Hello" ... the string s2 = "HeZZo"

s1 = sl.replace(l', 'Z");

* The variable s1 is updated to store "HeZZo"

The trim Method (Page 1)

* Returns a String with all the leading and trailing blank spaces stripped from the String
object

+ Although a String with the blanks removed is returned, the original String object is
unchanged

The trim Method (Page 2)
* Format:
stringObject.trim()
* There are no arguments to the method
* Example:
String s2 = s1.trim();
*Ifs1 =" hello goodbye

... the string s2 = "hello goodbye"
The split Method (Page 1)

CST242—Strings, Characters and Regular Expressions Page 12

94

98

99

100

* Splits a String object into tokens
« Tokens are a series of substrings or a collection of String objects (like an array)
* For example:
* In the String:
* “Tokens are sets of characters”
* The tokens are:

* "Tokens", “are”, “sets”,
* Assuming the blank space (

" ou

of”, “characters”
) is the delimiter

u o

The split Method (Page 2)
* Format:
stringObject.split(regExpession)
* regExpression is a regular expression, e.g. the String which is the delimiter between
the tokens
* Example:
String[] t1 = s1.split(" ");

The toString Method (Page 1)
» Remember the toString method is a member of the class Object from which all classes
extend ...
* All classes inherit toString from class Object (or through the superclass of the class)
and may call the method directly if not overridden
* Method toString of class String overrides method from class Object
* Returns the string value contents

The toString Method (Page 2)

* Formats:
stringObject.toString()

» Examples:
JOptionPane.showMessageDialog(null, s1.toString());
JOptionPane.showMessageDialog(null, s1);
JOptionPane.showMessageDialog(null, "hello".toString());

The toString Method (Page 3)
* So what is the difference between:
JOptionPane.showMessageDialog(null,

firstName + + lastName);
* And:
JOptionPane.showMessageDialog(null,
firstName.toString() + " ".toString()
+ lastName.toString());

* None—both call the toString methods of their String objects

CST242—Strings, Characters and Regular Expressions Page 13

101

102

103

104

105

The Character Class (Page 1)

* Character is a “wrapper” class that allows primitive char variables to be treated as
objects

* Located in the java.lang package (does not need to be imported)

* Documentation located at:

The Character Class (Page 2)

* There is a single constructor for the Character class

* Constructor has been deprecated and is marked for removal in a future version of Java
« Still works in Java 19

* Format:
* Character char = new Character(char);

* Example:
* Character c3 = new Character(c1);

The Character Class (Page 3)
* Most methods are static and take a char argument to either test the argument or
manipulate it in some way
* Format:
Character.method(char)
* No object is instantiated from the Character class
» Examples:
if (Character.isLetter('c'));
char c2 = Character.toUpperCase(c1);

The isDefined Method
* A static boolean method of the Character class that determines if the char argument is
defined in Unicode character set
* Returns either true or false
* Format:
Character.isDefined(char)
* char is char literal or char variable being evaluated
* Example:
if (Character.isDefined(c1)) {...}

The isDigit Method
* A static boolean method of the Character class that determines if char argument is a
digit (0-9)
* Returns either true or false
* Formats:
Character.isDigit(char)

http://download.oracle.com/javase/9/docs/api/java/lang/Character.html

CST242—Strings, Characters and Regular Expressions Page 14

106

107

108

109

* char is char literal or char variable being evaluated
* Example:
if (Character.isDigit(c1)) {...}

The isLetter Method
* A static boolean method of the Character class that determines if the char argument is
an alphabetic character (a-z or A-Z)
* Returns either true or false
* Formats:
Character.isLetter(char)
* char is char literal or char variable being evaluated
* Example:
if (Character.isLetter(c1)) {...}

The isLetterOrDigit Method
* A static boolean method of the Character class that determines if char argument is an
alphabetic character (a-z or A-Z) or digit (0-9)
* Returns either true or false
* Formats:
Character.isLetterOrDigit(char)
* char is char literal or char variable being evaluated
* Example:
if (Character.isLetterOrDigit(c1)) {...}

The isLowerCase Method
* A static boolean method of the Character class that determines if the char argument is
an lower case alphabetic character (a-z)
* Returns either true or false
* Formats:
Character.isLowerCase(char)
* char is char literal or char variable being evaluated
* Example:
if (Character.isLowerCase(c1)) {...}

The isUpperCase Method
* A static boolean method of the Character class that determines if the char argument is
an upper case alphabetic character (A-2)
* Returns either true or false
* Formats:
Character.isUpperCase(char)
* char is char literal or char variable being evaluated
* Example:
if (Character.jsUpperCase(c1)) {...}

CST242—Strings, Characters and Regular Expressions

110

111

112

113

114

115

The toLowerCase Method (Page 1)
» A static char method of the Character class that returns an alphabetic char converted
to lower case
* Adds binary 1 to 11th bit from left of the char
« Effects only alphabetic characters
+ Although a lowercase char is returned, the original char argument is unchanged

The toLowerCase Method (Page 2)
* Format:

Character.toLowerCase(char)

* char is char literal or char variable is the character that is being modified
* Example:

char c2 = Character.toLowerCase(c1);

*Ifc1 ='C" ... thencharc2 = 'c

The toUpperCase Method (Page 1)
» A static char method of the Character class that returns an alphabetic char converted
to upper case
» Subtracts binary 1 from 11th bit of the char
* Effects only alphabetic characters
* Although an uppercase char is returned, the original char argument is unchanged

The toUpperCase Method (Page 2)
* Format:

Character.toUpperCase(char)

* char is char literal or char variable is the character that is being modified
* Example:

char c2 = Character.toUpperCase(c1);

*Ifc1 ="'c'..then charc2 ='C’

The charValue Method
* Non-static method charValue returns a char which is the “value” of the character
variable or literal
* Format:
* char.charValue()
* Example:
* System.out.printIn(c1.charValue());
* If c1 = 'c' then prints ¢ to the console

The equals Method
* Non-static method equals returns a boolean value indicating if the value of the
char variable or literal is equal to the char argument
* Format:
* char.equals(char)

Page 15

CST242—Strings, Characters and Regular Expressions

116

118

119

124

125

* Example:
«if (cl.equals(c2)) { ... };
* Equivalent to:
eif(cl1==c2){...}

The compareTo Method
» Non-static method compareTo returns an int value indicating if the value of
the char variable or literal is less than or greater than or equal to the char argument

* Format:

* char.compareTo(char)
* Example:

* if (c1.compareTo(c2) > 0){... };

* Equivalent to:

sif (c1>c2){...}

Classes for Manipulation of Other Primitive Types (Page 1)

* There are classes for other primitive variables in addition to the Character class
* Called wrapper classes

* Include the classes Boolean, Double, Float, Byte, Short, Integer and Long, e.g.
Double.parseDouble

* These classes allow primitive variables to be treated as objects

Classes for Manipulation of Other Primitive Types (Page 2)
» Examples:

Integer grossPay;

ArrayList<Double> payments;

ObservableList<Float> hours;

* Classes for primitive variables are located in the java.lang package (do not need to be
imported)

Regular Expressions (Page 1)
* A regular expression (regex) is a String pattern that the “regular expression engine”
uses to attempt to match input text

* The pattern consists of one or more character literals and/or operators and/or other
constructs

* Regular expressions can be used in a wide variety of platforms and languages
including Java

Regular Expressions (Page 2)
* Characters may be one (1) or several characters
* When more than one (1) character, they are placed inside square [brackets]
* A range is specified with a dash (-)
* [A-Z] means all uppercase characters from A to Z
* [a-z] means all lowercase characters from a to z

Page 16

CST242—Strings, Characters and Regular Expressions

126

127

128

129

130

* [a-zA-Z] means all lowercase and uppercase characters
« [aeiou] means all lowercase vowels

Regular Expressions (Page 3)
* Predefined classes offer convenient short-hands for commonly used regular
expressions:
* . the dot (.) means any keyable character
*\d any digit
* So that "\d{3}" means exactly three digits
*\w any word character
*\s any white space character

Regular Expressions (Page 4)

* Quantifiers indicate (count) how many of the previous expression are required for a

match:
* *matches zero (0) or more occurrences
o+ matches one (1) or more occurrences
* ?matches zero (0) or one (1) occurrence
* {n} matches exactly n occurrences
*{n} matches n or more occurrences
« {n,m} matches between n and m occurrences

The matches Method (Page 1)

» Java uses the boolean method matches which is a member of the String class for
implementing the “regular expression engine”

* Tells whether or not a String matches the given regular expression

* Based on the result it returns either true or false

The matches Method (Page 2)
* Format:

stringObject.matches("regEx");

* regex is the regular expression as a String
* Example:

if (zipCode.matches("\\d{5}")) ...

» Matches exactly five digits

* Since the backslash (\) is a Java "escape” character, it requires two backslashes to

represent one backslash, e.g. "\\"

Characters (Page 1)
* Characters include any typeable (on the computer keyboard) text
* Examples:

» Starts with one uppercase letter

* Followed by a combination of zero (0) or more lowercase and/or uppercase letters

"[A-Z)[a-ZA-Z]*"

Page 17

CST242—Strings, Characters and Regular Expressions

131

132

133

134

135

136

Characters (Page 2)
* Examples (con.):
» Starts with one or more either lowercase or uppercase letters
* Followed in (parentheses) by a combination of zero (0) or more:
* A single apostrophe (') or dash (-)
* One or more lowercase and uppercase letters
"[a-zA-Z]+(['-][a-zA-Z]+)*"

Characters (Page 3)
* Examples (con.):
* Eight or more of any lowercase and/or uppercase letters
"[a-zA-Z]{8}"

Characters (Page 4)
* Examples (con.):
* An address
* One or more digits (numeric address)
* One space
* In (parentheses)

* One or more lowercase and/or uppercase letters (the name of the street,

avenue, etc.)
* One or more spaces

* One or more lowercase and/or uppercase letters (e.g. Street, Avenue, etc.)

"\d+\\s+([a-zA-Z] +\\s[a-zA-Z]+)"

The Dot (.) Wildcard
* The dot (.) is used as a wildcard meaning it represents any character
» Examples:
* Matches exactly five of any characters
" {5}"
» Matches any eight or more characters
"{8}"
Phone Numbers (Page 1)
* Simple phone number with dashes:
« Starts with 1 digit (not zero) and then two digits followed a dash
* Then another 1 digit (not zero) and then two digits followed by a dash
* Then four digits
* E.g. 999-999-9999
"[1-91\\d{2}-[1-9N\\{d2}-\\d{4}"

Phone Numbers (Page 2)
* Phone number which accepts either of two versions:

Page 18

CST242—Strings, Characters and Regular Expressions

137

138

139

140

141

142

1. The version with dashes from the previous page; or
2. The version with parentheses, e.g. (999) 999-9999
"M\([0-91{3N\)?[-\\s]?2([0-91{3})[--\\s] ?([0-9]{4}) $"
Social Security Numbers (Page 1)
+ Validating Social Security Numbers (SSN's) may be a bit deceiving and more difficult
to validate than might be expected

» The Social Security Administration, on June 25, 2011, revised their assignment
process to use a system of randomization for generating numbers

* Not possible to throw any values in and expect it to be a valid number since there still
are a few SSN's that are "off limits”

Social Security Numbers (Page 2)
* Simple—a hyphen-separated SSN:
* The caret (*) and dollar sign ($) represent the beginning and end of the expression
« Starts with three digits
* Followed by a dash (-)
* Followed by two digits
* Followed by a dash (-)
* Followed by four digits
"AM\d{3}-\\d{2}-\\d{4}$"

Social Security Numbers (Page 3)
* Will accept SSN in the form of 123-45-6789 OR 123456789:
* The pipe (]) symbol means “or”

A3\ {2}-\\d{4)|(\\d{3A\d{2)\\d{4}) $"

Social Security Numbers (Page 4)
* Uses current SSN randomization rules effective since June 25, 2011
* Validates 9 digit numbers, not separated or separated by dash (-) or space
* Not starting with 000, 666, or 900-999
* Not containing 00 or 0000 in the middle or at the end
"/ (21000)(?!666)([0-8]\\d{2}) ([-1)? (?!00)\\d\\d ([-1)? (?!0000)\\d{4}$"

E-mail Addresses (Page 1)
+ E-mail validation can go from very simple to quite complex
* The simplest e-mail validation:

"AMAH)@(H+)$"

E-mail Addresses (Page 2)
» Adding restrictions on the username part:
* Multiple A-Z and a-z characters allowed
* Multiple 0-9 numbers allowed
+ Additionally may contain only dot (), dash (-) and underscore () characters

Page 19

CST242—Strings, Characters and Regular Expressions Page 20

A[A-Za-z0-9+_-1+@(.+)$

143 E-mail Addresses (Page 3)
* Adding restrictions on the username and the domain parts:
* One or more words (\w) and dots (.) before the ampersand (@)
* One or more words (\w) and dots (.) after the ampersand (@)
A word of two to four characters after the last dot (.), e.g. “.com”, “.uk”, etc

"AAWANT+H@(NWW-THN) + N\w-1{2,4}$"

144 E-mail Addresses (Page 4)
* Allowing e-mail addresses permitted by RFC 5322 (the organization that governs e-
mail address format):
ANMa-zA-Z0-9_1#3%8&'*+/=7{}~ A .-]+ @[a-zA-Z0-9.-]+$

145 Dates (Page 1)
* Dates can be simple without validation, or can validate dates with number of days in a
month and validate Feb 29t for leap years
» Dates with:
« Slashes (/)
* One or two digit month and date
* A four digit year
"AM\d{1,2}A\d{1,2}/\\d{4}$"

146 Dates (Page 2)
* Dates with:
* Dashes (-)
* One or two digit month and date
* A two digit year:
"AM\d{1,2}-\\d{1,2}-\\d{2}$"

148 Regex Examples on the Web

* Learning regular expressions can take a great deal of time and effort

* Many programmers/developers will search a wide number of websites that give many
regular expressions for free download and usage

* One of the better ones is:

http://www.regexlib.com/

	Slide 1: Strings, Characters and Regular Expressions
	Slide 2: char and String Variables
	Slide 3: Character Representation
	Slide 4: The Unicode Table
	Slide 5: The StringBuilder Class (Page 1)
	Slide 6: The StringBuilder Class (Page 2)
	Slide 7: Instantiating StringBuilder Objects (Page 1)
	Slide 8: Instantiating StringBuilder Objects (Page 2)
	Slide 9: The append Method (Page 1)
	Slide 10: The append Method (Page 2)
	Slide 11: The insert Method (Page 1)
	Slide 12: The insert Method (Page 2)
	Slide 13: The delete Method
	Slide 14: The length Method
	Slide 15: The capacity Method
	Slide 16: The deleteCharAt Method
	Slide 17: The replace Method (Page 1)
	Slide 18: The replace Method (Page 2)
	Slide 19: The reverse Method
	Slide 20: The setCharAt Method
	Slide 21: The toString Method (Page 1)
	Slide 22: The toString Method (Page 2)
	Slide 24: The String Class (Page 1)
	Slide 25: The String Class (Page 2)
	Slide 26: Instantiating Strings (Page 1)
	Slide 27: Instantiating Strings (Page 2)
	Slide 28: Instantiating Strings (Page 3)
	Slide 29: Instantiating Strings (Page 4)
	Slide 31: Methods of the String Class
	Slide 32: The length Method
	Slide 33: The charAt Method (Page 1)
	Slide 34: The charAt Method (Page 2)
	Slide 36: The equals and equalsIgnoreCase Methods (Page 1)
	Slide 37: The equals and equalsIgnoreCase Methods (Page 2)
	Slide 38: The equals and equalsIgnoreCase Methods (Page 3)
	Slide 39: The equals and equalsIgnoreCase Methods (Page 4)
	Slide 40: String Comparison Processing
	Slide 41: String Comparison Examples
	Slide 43: The compareTo and compareToIgnoreCase Methods (Page 1)
	Slide 44: The compareTo and compareToIgnoreCase Methods (Page 2)
	Slide 45: The compareTo and compareToIgnoreCase Methods (Page 3)
	Slide 47: The regionMatches Method (Page 1)
	Slide 48: The regionMatches Method (Page 2)
	Slide 49: The regionMatches Method (Page 3)
	Slide 50: The regionMatches Method (Page 4)
	Slide 52: The indexOf Method (Page 1)
	Slide 53: The indexOf Method (Page 2)
	Slide 54: The lastIndexOf Method (Page 1)
	Slide 55: The lastIndexOf Method (Page 2)
	Slide 57: The substring Method (Page 1)
	Slide 58: The substring Method (Page 2)
	Slide 59: The substring Method (Page 3)
	Slide 61: The concat Method (Page 1)
	Slide 62: The concat Method (Page 2)
	Slide 64: The toLowerCase Method (Page 1)
	Slide 65: The toLowerCase Method (Page 2)
	Slide 66: The toUpperCase Method (Page 1)
	Slide 67: The toUpperCase Method (Page 2)
	Slide 69: The replace Method (Page 1)
	Slide 70: The replace Method (Page 2)
	Slide 71: The trim Method (Page 1)
	Slide 72: The trim Method (Page 2)
	Slide 93: The split Method (Page 1)
	Slide 94: The split Method (Page 2)
	Slide 98: The toString Method (Page 1)
	Slide 99: The toString Method (Page 2)
	Slide 100: The toString Method (Page 3)
	Slide 101: The Character Class (Page 1)
	Slide 102: The Character Class (Page 2)
	Slide 103: The Character Class (Page 3)
	Slide 104: The isDefined Method
	Slide 105: The isDigit Method
	Slide 106: The isLetter Method
	Slide 107: The isLetterOrDigit Method
	Slide 108: The isLowerCase Method
	Slide 109: The isUpperCase Method
	Slide 110: The toLowerCase Method (Page 1)
	Slide 111: The toLowerCase Method (Page 2)
	Slide 112: The toUpperCase Method (Page 1)
	Slide 113: The toUpperCase Method (Page 2)
	Slide 114: The charValue Method
	Slide 115: The equals Method
	Slide 116: The compareTo Method
	Slide 118: Classes for Manipulation of Other Primitive Types (Page 1)
	Slide 119: Classes for Manipulation of Other Primitive Types (Page 2)
	Slide 124: Regular Expressions (Page 1)
	Slide 125: Regular Expressions (Page 2)
	Slide 126: Regular Expressions (Page 3)
	Slide 127: Regular Expressions (Page 4)
	Slide 128: The matches Method (Page 1)
	Slide 129: The matches Method (Page 2)
	Slide 130: Characters (Page 1)
	Slide 131: Characters (Page 2)
	Slide 132: Characters (Page 3)
	Slide 133: Characters (Page 4)
	Slide 134: The Dot (.) Wildcard
	Slide 135: Phone Numbers (Page 1)
	Slide 136: Phone Numbers (Page 2)
	Slide 137: Social Security Numbers (Page 1)
	Slide 138: Social Security Numbers (Page 2)
	Slide 139: Social Security Numbers (Page 3)
	Slide 140: Social Security Numbers (Page 4)
	Slide 141: E-mail Addresses (Page 1)
	Slide 142: E-mail Addresses (Page 2)
	Slide 143: E-mail Addresses (Page 3)
	Slide 144: E-mail Addresses (Page 4)
	Slide 145: Dates (Page 1)
	Slide 146: Dates (Page 2)
	Slide 148: Regex Examples on the Web

