
Array Searching and Sorting

CST242

Multiple-Dimensional Arrays

• Elements of arrays may have more than one index, e.g.

mileage[1][3]

• In the example above, it is as though the elements are in two-dimensions such a table

with rows and columns

• Additional dimensions that go beyond two may be included as is needed

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

2

A Sample 2-Dimensional Array

Accessing Array Elements

• An array element is accessed by using row and column integers in two sets of brackets

• Example:

mileage[1][3]

• Integer variables may be used to replace either or both of the indexes, e.g.

mileage[start][end]

Declaring a 2-Dimensional Array

• The new array object is created using two sets of brackets in the array declaration

• First bracketed value is conceptually the number of rows

• Second bracketed value is conceptually the number of columns

• Example:

int[][] mileage = new int[4][4];

Initializing a 2-Dimensional Array in the Declaration

• Each “row” is assigned in a separate subset of command-delimited brackets

• Example:

int[][] mileage =

{

{ 0, 160, 390, 40},

{160, 0, 240, 200},

{390, 240, 0, 440},

{ 40, 200, 440, 0}

};

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

3

4

5

6

MultidimensionalArrays2.java

Searching and Sorting

• Searching data involves determining whether a value (referred to as the search key) is

present in the data and, if so, finding its location

– Two popular search algorithms are the simple linear search and the faster but more

complex binary search

• Sorting places data in ascending or descending order, based on one or more sort keys

The Arrays Class

• Class Arrays contains methods for manipulating arrays (such as sorting and searching)

• Also contains a static methods that allow arrays to be viewed as lists

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

8

9

• Class Arrays contains methods for manipulating arrays (such as sorting and searching)

• Also contains a static methods that allow arrays to be viewed as lists

• Found in the “java.util” package, e.g.

import java.util.Arrays;

The sort() Method of Class Arrays

• The sort method is a static method of the Arrays class that sorts the elements in an

array in ascending order by default

• Overloaded version lets sort order to be changed

• Format:

Arrays.sort(arrayObject);

• Example:

Arrays.sort(values);

The toString() Method of Class Arrays

• The toString method is a static method of class Arrays that displays the array object as

a list (without iterating through it)

• Format:

Arrays.toString(arrayObject);

• Example:

System.out.println(Arrays.toString(values));

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

10

11

• Sort1.java

Linear Search (Page 1)

• The linear search algorithm searches each element in an array sequentially attempting

to match elements to a search key

1. The algorithm tests each element against the search key until it finds one that

matches the search key and returns the index of that element

2. If the search key does not match an element in the array, the algorithm tests each

element, and when the end of the array is reached, informs the user that the search

key is not present

Linear Search (Page 2)

• If there are duplicate values in the array, the linear search returns the index of the first

element in the array that matches the search key

Big O Notation (Page 1)

• Searching algorithms all accomplish the same goal—finding an element that matches a

given search key, if such an element does exist

• Major difference is the amount of effort they require to complete the search

Big O Notation (Page 2)

• Big O notation indicates the worst-case run time for an algorithm—that is how hard an

algorithm may have to work to solve a problem

• For searching and sorting algorithms, this depends particularly on how many data

elements there are

Big O Notation (Page 3)

• If an algorithm is completely independent of the number of elements in the array, it is

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

13

14

15

16

17

Big O Notation (Page 3)

• If an algorithm is completely independent of the number of elements in the array, it is

said to have a constant run time, which is represented in Big O notation as O(1)

– An algorithm that is O(1) does not necessarily require only one comparison

– O(1) just means that the number of comparisons is constant—it does not grow as

the size of the array increases

Big O Notation (Page 4)

• An algorithm that requires a total of n – 1 comparisons is said to be O(n)

– An O(n) algorithm is referred to as having a linear run time

– O(n) is often pronounced “on the order of n” or simply “order n”

Big O Notation (Page 5)

• Constant factors are omitted in Big O notation

• Big O is concerned with how an algorithm’s run time grows in relation to the number

of items processed

Big O Notation (Page 6)

• O(n2) is referred to as quadratic run time and pronounced “on the order of n-squared”

or more simply “order n-squared”

– When n is small, O(n2) algorithms (running on today’s computers) will not noticeably

affect performance

– But as n grows, you’ll start to notice the performance degradation.

– An O(n2) algorithm running on a million-element array would require a trillion

“operations” (where each could actually require several machine instructions to

execute)

– A billion-element array would require a quintillion operations

Big O Notation (Page 6)

• You will also see algorithms with more favorable Big O measures

Big O for a Linear Search (Page 1)

• The linear search algorithm runs in O(n) time

– The worst case in this algorithm is that every element must be checked to determine

whether the search item exists in the array

– If the size of the array is doubled, the number of comparisons that the algorithm

must perform is also doubled

Big O for a Linear Search (Page 2)

• A linear search can provide good performance if the element matching the search key

happens to be at or near the front of the array

– Algorithms that perform well, on average, across all searches, including those where

the element matching the search key is near the end of the array

Big O for a Linear Search (Page 3)

• If a program needs to perform many searches on large arrays, it is better to implement

a more efficient algorithm, such as the binary search

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

17

18

19

20

21

22

23

24

• Search1.java

Binary Search (Page 1)

• The binary search algorithm is more efficient than linear search, but it requires that the

array be sorted

– The first iteration tests the middle element in the array; if this matches the search

key, the algorithm ends

– If the search key is less than the middle element, the algorithm continues with only

the first half of the array

– If the search key is greater than the middle element, the algorithm continues with

only the second half

Binary Search (Page 2)

• The binary search algorithm (con.)

– Each iteration tests the middle value of the remaining portion of the array

– If the search key does not match the element, the algorithm eliminates half of the

remaining elements

– The algorithm ends by either finding an element that matches the search key or

reducing the subarray to zero size

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

26

27

Big O for a Binary Search (Page 1)

• In the worst-case scenario, searching a sorted array of 1023 elements takes only 10

comparisons when using a binary search

– The number 1023 (210 – 1) is divided by 2 only 10 times to get the value 0, which

indicates that there are no more elements to test

– Dividing by 2 is equivalent to one comparison in the binary search algorithm

Big O for a Binary Search (Page 2)

• Thus:

– An array of 1,048,575 (220 – 1) elements takes a maximum of 20 comparisons to find

the key

– An array of 1,073,741,824 (over one billion) elements takes a maximum of 30

comparisons to find the key

• A difference between an average of 500 million comparisons for the linear search

and a maximum of only 30 comparisons for the binary search

Big O for a Binary Search (Page 3)

• Maximum number of comparisons needed for the binary search of any sorted array is

the exponent of the first power of 2 greater than the number of elements in the array,

represented as log2 n.

Big O for a Binary Search (Page 4)

• All logarithms grow at roughly the same rate, so in big O notation the base can be

omitted

• This results in a big O of O(log n) for a binary search, also known as logarithmic run

time

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

29

30

31

32

33

• Search3.java

The binarySearch() Method of Class Arrays (Page 1)

• The binarySearch() method searches an array object for the specified value (search key)

using the binary search algorithm

• Returns the index of the matching element, or returns -1 if the search fails

• The array must be sorted before making the call

The binarySearch() Method of Class Arrays (Page 2)

• Format:

Arrays.binarySearch(arrayObject, searchKey)

• Example:

int index = Arrays.binarySearch(values, lookup);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

35

36

• Search4.java

Sorting Algorithms

• Sorting data (e.g., placing the data into some particular order, ascending or

descending) is one of the most important computing applications

• An important item to understand about sorting is that the sorted array will be the same

no matter which algorithm you use to sort the array

• The choice of algorithm affects only the run time and memory use of the program

Selection Sort

• The selection sort is a simple, but inefficient, sorting algorithm

• Its first iteration selects the smallest element in the array and swaps it with the first

element.

• The second iteration selects the second-smallest item (which is the smallest item of the

remaining elements) and swaps it with the second element

Selection Sort

• The algorithm continues until the last iteration selects the second-largest element and

swaps it with the second-to-last index, leaving the largest element in the last index

• After the ith iteration, the smallest i items of the array will be sorted into increasing

order in the first i elements of the array:

– After the first iteration, the smallest element is in first position

– After second iteration, the two smallest elements are in order in first two positions,

etc.

Selection Sort

• After the first iteration, the smallest element is in first position; after second iteration,

the two smallest elements are in order in first two positions, etc.

• The selection sort algorithm runs in O(n2) time.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

38

39

40

41

• Sort2.java (selection sort)

Insertion Sort

• The insertion sort is another simple although inefficient, sorting algorithm

• The first iteration takes the second element in the array and, if it’s less than the first

element, swaps it with the first element

• The second iteration looks at the third element and inserts it into the correct position

with respect to the first two, so all three elements are in order

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

45

• The second iteration looks at the third element and inserts it into the correct position

with respect to the first two, so all three elements are in order

• At the ith iteration of this algorithm, the first i elements in the original array will be

sorted

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

• Sort4.java (bubble sort)

Merge Sort (Page 1)

• The merge sort is an efficient sorting algorithm that conceptually is more complex than

selection sort and insertion sorts

• Sorts an array by splitting it into two equal-sized sub-arrays, sorting each sub-array,

then merging them into one larger array

Merge Sort (Page 2)

• The implementation of the merge sort in this example is recursive

– The base case is an array with one element (which of course is sorted already), so the

merge sort immediately returns in this case

– Recursion step splits array into two approximately equal pieces, recursively sorts

them, then merges the two sorted arrays into one larger, sorted array

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

50

51

