
Concurrency Page 1

Concurrency

CST242

Concurrent Processing (Page 1)

• Only computers with multiple processors can truly execute multiple instructions

concurrently

• On single-processor computers only a single instruction can execute at once …

• Older computers created the illusion of concurrent execution by rapidly switching

between activities

Concurrent Processing (Page 2)

• Older programming languages did not enable you to specify concurrent activities

• Historically concurrency implemented with operating system primitives available only to

experienced systems programmers

• Concurrency available in Java through the language and Java API

Concurrent Processing (Page 3)

• Single-threaded applications can lead to poor responsiveness since lengthy activities

must complete before others can begin

• Multithreading can increase performance even on single-processor and multi-processor

systems …

• When one thread cannot proceed (e.g., it is waiting for the result of an I/O operation

to complete), another can use the processor (or one of the processors)

Life Cycle of a Thread (Page 1)

• Thread occupies one of several thread states

• A newly instantiated thread begins its life cycle in the new state

• When the program starts the thread it enters the runnable state

• Considered to be executing its task

Life Cycle of a Thread (Page 2)

• A runnable thread transitions to the waiting state while it waits for another thread to

perform a task …

• Transitions back to the runnable state only when another thread notifies the waiting

thread to continue executing

Life Cycle of a Thread (Page 3)

• Runnable thread can enter timed waiting state for a specified interval of time …

• Transitions back to the runnable state when that time interval expires or when the

event it is waiting for occurs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

2

3

4

5

6

7

Thread Life-Cycle UML State Diagram

Life Cycle of a Thread (Page 4)

• Timed waiting and waiting threads cannot use a processor, even if one is available

• A runnable thread can transition to the timed waiting state if it provides an optional wait

interval when it is waiting for another thread to perform a task …

• Returns to the runnable state when (1) it is notified by another thread; or (2) the

timed interval expires

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

8

9

Concurrency Page 2

• Returns to the runnable state when (1) it is notified by another thread; or (2) the

timed interval expires

Life Cycle of a Thread (Page 5)

• A thread also enters the timed waiting state when put to sleep

• Remains in timed waiting state for designated period of time; then returns to

runnable state

• A runnable thread transitions to blocked state when it attempts to perform a task that

cannot be completed immediately …

• Must temporarily wait until task completes

• Cannot use a processor, even if one is available

Life Cycle of a Thread (Page 6)

• A runnable thread enters the terminated state (sometimes called the dead state) when it

successfully completes its task …

• Or terminates for some other reason, perhaps due to an error

Java’s Runnable States (Page 1)

• At operating system level, Java’s runnable state encompasses two separate states:

• A runnable thread when it starts, first enters the ready state

• When thread is dispatched by the OS it enters the running state

• Operating system hides these states from the JVM (Java virtual machine) which only sees

the runnable state

Java’s Runnable States (Page 2)

• Timeslicing enables the threads of equal priority to share a processor in a round-robin

fashion:

• When the thread’s quantum (its timeslice) expires, returns to ready state

• Operating system dispatches another thread of equal priority, if available

• Transitions between ready and running states are handled solely by the OS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

10

11

12

13

Operating System’s Internal View of Java’s Runnable State

Creating and Executing Threads (Page 1)

• Objects instantiated from a class that implements Runnable interface represents a “task”

that can execute concurrently with other tasks

• Runnable is a member of the package java.lang (need not be imported)

• The run method (abstract method of the Runnable interface) contains code that defines

task that a Runnable object performs

• Starting the thread causes the object’s run method to be called

Creating and Executing Threads (Page 2)

• Example:

public class PrintTask implements Runnable

{ …

@Override

public void run()

{ …

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

14

15

16

Concurrency Page 3

{ …

The Thread Class

• The Java Virtual Machine allows an application to have multiple threads of execution

that are running concurrently

• The Thread class is used here to call static method sleep

• From the java.lang package (need not be imported)

The sleep Method (Page 1)

• A static method of the Thread class that causes currently executing threads to sleep:

• Temporarily ceases execution of thread; places it into a timed waiting state

• Argument specified in number of milliseconds (1000 milliseconds per second)

The sleep Method (Page 2)

• A static method of the Thread class that causes currently executing threads to sleep

(con.):

• Throws InterruptedException which is a “checked” exception (must be caught) if

sleeping thread’s interrupt method is called

• Also from the java.lang package (need not be imported)

The sleep Method (Page 3)

• Format:

Thread.sleep(milliseconds);

• Example:

Thread.sleep(sleepTime);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

17

18

19

20

• PrintTask.java

Thread Management with Executor Framework (Page 1)

• The preferable method for managing execution of Runnable objects is to use Executor

interfaces

• “Executor” objects create and manage thread pools (a specified number of running

threads) to execute Runnables

Thread Management with Executor Framework (Page 2)

• Executor advantages over creating threads manually:

• It can reuse existing threads to eliminate new thread overhead

• Improves performance by optimizing number of threads to ensure that processor

stays busy

Thread Management with Executor Framework (Page 3)

• The Executor method execute accepts a Runnable object as its argument …

• Assigns each Runnable object that it receives to one of the available threads in the

thread pool

• If none available, creates a new thread or waits for a thread to become available

The ExecutorService Interface and Executor Framework (Page 1)

• Interface ExecutorService

• Imported from package java.util.concurrent and extends the Executor superinterface

import java.util.concurrent.ExecutorService;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

22

23

24

25

Concurrency Page 4

• Imported from package java.util.concurrent and extends the Executor superinterface

import java.util.concurrent.ExecutorService;

• Declares methods for managing the life cycle of an Executor

• Objects of this type are created using static methods declared in class Executors (also

imported from package java.util.concurrent)

import java.util.concurrent.Executors;

The ExecutorService Interface and Executor Framework (Page 2)

• The static method newCachedThreadPool() is a “factory method” that fully implements

all methods for an ExecutorService object

• Including execute() and shutdown()

• Member of the class Executors which contains methods for instantiating objects for

Executor and ExecutorService classes

The ExecutorService Interface and Executor Framework (Page 3)

• Format:

ExecutorService executorServiceObject = Executors.newCachedThreadPool();

• Example:

ExecutorService executorService = Executors.newCachedThreadPool();

The execute method of the ExecutorService Interface

• Method execute of the ExecutorService class executes command sometime in the future

• Effectively starts the thread and calls the run() method when a thread becomes

available

• Format:

executorServiceObject.execute(runnableObject);

• Example:

executorService.execute(task1);

The shutdown method of the ExecutorService Interface

• Method shutdown of the ExecutorService interface initiates an orderly shutdown of

ExecutorService …

• Previously submitted tasks are completed, but no new tasks are accepted

• Format:

executorServiceObject.shutdown();

• Example:

executorService.shutdown();

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

26

27

28

29

• Concurrency1.java

Thread Synchronization (Page 1)

• Coordinates access to shared data by multiple concurrent threads:

• Indeterminate results may occur unless access to a shared object is managed properly

• Gives only one thread at a time exclusive access to code that manipulates a shared

object while other threads wait

• When thread with exclusive access to the object finishes manipulating the object, one

of the threads that was waiting is allowed to proceed

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

31

Concurrency Page 5

of the threads that was waiting is allowed to proceed

Thread Synchronization (Page 2)

• Java provides built-in monitors used to implement synchronization

• Every object has a monitor and a monitor lock which enforces mutual exclusion …

• Monitor ensures that object’s monitor lock is held by a maximum of one thread at any

time

Thread Synchronization (Page 3)

• To enforce mutual exclusion:

• Thread must “acquire” the lock before it can proceed with its operation

• Other threads attempting to perform an operation that requires the same lock will be

blocked until the first thread releases the lock

The synchronized Statement

• Within a method enforces mutual exclusion on a block of code

• Format:

synchronized (object)

{

statements

}

• Where object is object whose monitor lock will be acquired (normally this)

Synchronized Methods (Page 1)

• A synchronized method is the equivalent of a synchronized statement that encloses the

entire body of a method

• Format:

public synchronized void methodName([parameters])

{ …

Synchronized Methods (Page 2)

• Example:

public synchronized void add(int value)

{

sharedArray[index] = value;

index++;

}

Synchronized Data Sharing—Making Operations Atomic

• Simulate atomicity by ensuring that only one thread carries out a set of operations at a

time

• Immutable data shared across threads

• Declare the corresponding data fields final to indicate that variables’ values will not

change after they are initialized

private final SimpleArray sharedSimpleArray;

private final int startValue;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

32

33

34

35

36

37

Concurrency Page 6

private final int startValue;

The awaitTermination Method (Page 1)

• A boolean method for an ExecutorService object that blocks until (whichever happens

first):

• Either all tasks have completed execution after a shutdown request

• Or the timeout occurs

• Or the current thread is interrupted

• Returns either true if the executor terminated or false if the timeout elapsed before

termination

The awaitTermination Method (Page 2)

• Format:

executorServiceObject.awaitTermination(timeout,unit)

• timeout—the maximum time to wait

• unit—the time unit of the timeout argument

• Example:

boolean tasksEnded = executorService.awaitTermination(1, TimeUnit.MINUTES);

The TimeUnit Class (Page 1)

• The TimeUnit class represents various time level durations for concurrent operations

• Provides methods to convert across units, and to perform timing and delay operations in

these units

• TimeUnit does not maintain time information, but only helps organize and use time

representations

• Found in the java.util.concurrent package

import java.util.concurrent.TimeUnit;

The TimeUnit Class (Page 2)

• The class provides a number of enum constants:

TimeUnit.DAYS

TimeUnit.HOURS

TimeUnit.MINUTES

TimeUnit.SECONDS

TimeUnit.MILLISECONDS

TimeUnit.MICROSECONDS

TimeUnit.NANOSECONDS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

38

39

40

41

•

Software Engineering Observation 23.1

• Place all accesses to mutable data that may be shared by multiple threads inside

synchronized statements or synchronized methods that synchronize on the same lock

• When performing multiple operations on shared data, hold the lock for the entirety of

the operation to ensure that the operation is effectively atomic

Performance Tip 23.2

• Keep the duration of synchronized statements as short as possible while maintaining the

needed synchronization

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

43

44

Concurrency Page 7

• Keep the duration of synchronized statements as short as possible while maintaining the

needed synchronization

• Minimizes the wait time for blocked threads

• Avoid performing I/O, lengthy calculations and operations that do not require

synchronization with a lock held

Good Programming Practice 23.1

• Always declare data fields that are not expected to change as final

• Primitive variables declared as final can safely be shared across threads

• Ensures that the object it refers to will be fully constructed and initialized before it is

used by the program

• Prevents reference from pointing to another object

Multithreading with JavaFX

• All JavaFX applications have a single thread, called the JavaFX application thread

• Handles interactions with the application’s controls

• All tasks requiring interaction with application’s GUI are placed in an event queue

• Then tasks are executed sequentially by the JavaFX application thread as needed

The Task Class (Page 1)

• Task is an abstract class used in JavaFX to create objects that perform “long-running”

computations

• Continually updates JavaFX components from event dispatch thread based on the

computational results

The Task Class (Page 2)

• Imported from package “javafx.concurrent”

import javafx.concurrent.Task;

• Implements interface Runnable

• Therefore Task objects are threads

The Task Class (Page 3)

• To use the generic class Task:

• The new class should extend the abstract class Task and …

• Override Task’s abstract method call

The Task Class (Page 4)

• Format:

public class ClassName extends Task<GenericType>

{ …

• Example:

public class FibonacciTask extends Task<Long>

{ …

The Call Method (Page 1)

• The abstract call method is invoked when Task is executed

• It must be overridden and implemented by its subclasses, and it performs the

background thread logic

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

45

46

47

48

49

50

51

Concurrency Page 8

• It must be overridden and implemented by its subclasses, and it performs the

background thread logic

• Only superclass methods updateProgress, updateMessage, and updateTitle methods of

Task may be called from within method call

The Call Method (Page 2)

• Task is a generic class so its call method returns an object and its access modified is

protected:

@Override

protected GenericType call()

{ …

• The GenericType may be:

• Long for integer types

• Double for floating point types

The Call Method (Page 3)

• Example:

@Override

protected Long call()

{ …

The updateMessage Method (Page 1)

• Inherited Task method updateMessage updates Task’s message property in the JavaFX

application thread while it is running

• Usually placed in the call method

• Does not wait until the task is completed unlike method getMessage

The updateMessage Method (Page 2)

• Format:

updateMessage(string);

• Example:

updateMessage("Calculating…");

The messageProperty Method (Page 1)

• The method messageProperty in a JavaFX application thread gets the value of the

message property from the task

• It is the String argument returned from the updateMessage method in superclass Task

The messageProperty Method (Page 2)

• Format:

taskName.messageProperty()

• Example:

labelMessage.textProperty().bind(task.messageProperty());

The textProperty.bind Method (Page 1)

• Review: Binding methods are used to update property values of JavaFX nodes

dynamically during runtime

• The textProperty.bind method for any JavaFX control “binds” the Text property of that

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

52

53

54

55

56

57

58

Concurrency Page 9

dynamically during runtime

• The textProperty.bind method for any JavaFX control “binds” the Text property of that

control to a property value in a task object

• Any time the value changes in the task, the Text property automatically updates

The textProperty.bind Method (Page 2)

• Format:

controlName.textProperty().bind(taskValue);

• Example:

labelMessage.textProperty().bind(task.messageProperty());

• Binds the text property of labelMessage to the Task object’s message

The setOnRunning Method (Page 1)

• Method setOnRunning from the Task class registers a listener method that is invoked

when the Task “enters” the running state (starts to run)

• May be registered as a lambda expression

• This occurs when the Task has been assigned a processor and begins executing its call

method

The setOnRunning Method (Page 2)

• Format:

taskName.setOnRunning((eventParameter) -> …)

• Example:

task.setOnRunning((runningEvent) ->

{

labelFibonacci.setText("");

buttonGo.setDisable(true);

});

The setOnSucceeded Method (Page 1)

• Method setOnSucceeded from the Task class registers a listener method that is invoked

when the Task “enters” the succeeded state (is completed)

• May be registered as a lambda expression

• In this case, the Task’s getValue method (from interface Worker) is called to obtain the

result from the call method

The setOnSucceeded Method (Page 2)

• Format:

taskName.setOnSucceeded((eventParameter) -> …)

• Example:

task.setOnSucceeded((succeededEvent) ->

{

labelFibonacci.setText(task.getValue().toString());

buttonGo.setDisable(false);

});

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

59

60

61

62

63

Concurrency Page 10

});

The getValue Method

• Method getValue from class Task returns the return value from call method when the

task is completed

• Format:

taskName.getValue()

• Example:

task.setOnSucceeded((succeededEvent) ->

{

labelFibonacci.setText(task.getValue().toString())

});

The setCollapsible Method (Page 1)

• For JavaFX TitledPane control, boolean method setCollapsible sets a “collapse” arrow to

visible so as to collapse and hide the pane (or not)

• Default value is true

• Set to false, lets the TitledPane be used as a “visual” container without collapsing

• Only for visual effect as in “Concurrency3.java”

The setCollapsible Method (Page 2)

• Format:

titledPaneObject.setCollapsible(true | false);

• Example:

titledPaneWithFibonacciTask.setCollapsible(false);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

64

65

66

• Concurrency3.java

The updateValue Method (Page 1)

• The inherited Task method updateValue returns a Task’s value property in the JavaFX

application thread while it is running

• Usually placed in call method

• Does not wait until the task is completed like method getValue

The updateValue Method (Page 2)

• Format:

updateValue(value);

• Example:

updateValue(i);

The updateProgress Method

• The method updateProgress returns a Task’s workDone, totalWork and progress

properties while it is running

• Format:

updateProgress(workDone, max);

• workDone is the current value from -1 to max

• max is the terminal value

• Example:

updateProgress(i + 1, primes.length);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

68

69

70

Concurrency Page 11

• Example:

updateProgress(i + 1, primes.length);

The progressProperty Method

• Returns a double value which represents the progress of a Task

• Format:

taskObject.progressProperty()

• Example:

progressBar.progressProperty().bind(task.progressProperty());

The addListener Method (Page 1)

• Method valueProperty().addListener() of class Task creates event handler that executes

every time Task’s value property updates

• From updateValue method of the Task

• May be registered as a lambda expression that returns:

• observable—value returned from the object

• oldValue—previous value before it was updated

• newValue—current value

The addListener Method (Page 2)

• Format:

taskName.valueProperty().addListener((observable, oldValue, newValue)

…);

• Example:

task.valueProperty().addListener((observable, oldValue, newValue) ->

{

primes.add(newValue);

});

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

71

72

73

	Slide 1: Concurrency
	Slide 2: Concurrent Processing (Page 1)
	Slide 3: Concurrent Processing (Page 2)
	Slide 4: Concurrent Processing (Page 3)
	Slide 5: Life Cycle of a Thread (Page 1)
	Slide 6: Life Cycle of a Thread (Page 2)
	Slide 7: Life Cycle of a Thread (Page 3)
	Slide 9: Life Cycle of a Thread (Page 4)
	Slide 10: Life Cycle of a Thread (Page 5)
	Slide 11: Life Cycle of a Thread (Page 6)
	Slide 12: Java’s Runnable States (Page 1)
	Slide 13: Java’s Runnable States (Page 2)
	Slide 15: Creating and Executing Threads (Page 1)
	Slide 16: Creating and Executing Threads (Page 2)
	Slide 17: The Thread Class
	Slide 18: The sleep Method (Page 1)
	Slide 19: The sleep Method (Page 2)
	Slide 20: The sleep Method (Page 3)
	Slide 22: Thread Management with Executor Framework (Page 1)
	Slide 23: Thread Management with Executor Framework (Page 2)
	Slide 24: Thread Management with Executor Framework (Page 3)
	Slide 25: The ExecutorService Interface and Executor Framework (Page 1)
	Slide 26: The ExecutorService Interface and Executor Framework (Page 2)
	Slide 27: The ExecutorService Interface and Executor Framework (Page 3)
	Slide 28: The execute method of the ExecutorService Interface
	Slide 29: The shutdown method of the ExecutorService Interface
	Slide 31: Thread Synchronization (Page 1)
	Slide 32: Thread Synchronization (Page 2)
	Slide 33: Thread Synchronization (Page 3)
	Slide 34: The synchronized Statement
	Slide 35: Synchronized Methods (Page 1)
	Slide 36: Synchronized Methods (Page 2)
	Slide 37: Synchronized Data Sharing—Making Operations Atomic
	Slide 38: The awaitTermination Method (Page 1)
	Slide 39: The awaitTermination Method (Page 2)
	Slide 40: The TimeUnit Class (Page 1)
	Slide 41: The TimeUnit Class (Page 2)
	Slide 43: Software Engineering Observation 23.1
	Slide 44: Performance Tip 23.2
	Slide 45: Good Programming Practice 23.1
	Slide 46: Multithreading with JavaFX
	Slide 47: The Task Class (Page 1)
	Slide 48: The Task Class (Page 2)
	Slide 49: The Task Class (Page 3)
	Slide 50: The Task Class (Page 4)
	Slide 51: The Call Method (Page 1)
	Slide 52: The Call Method (Page 2)
	Slide 53: The Call Method (Page 3)
	Slide 54: The updateMessage Method (Page 1)
	Slide 55: The updateMessage Method (Page 2)
	Slide 56: The messageProperty Method (Page 1)
	Slide 57: The messageProperty Method (Page 2)
	Slide 58: The textProperty.bind Method (Page 1)
	Slide 59: The textProperty.bind Method (Page 2)
	Slide 60: The setOnRunning Method (Page 1)
	Slide 61: The setOnRunning Method (Page 2)
	Slide 62: The setOnSucceeded Method (Page 1)
	Slide 63: The setOnSucceeded Method (Page 2)
	Slide 64: The getValue Method
	Slide 65: The setCollapsible Method (Page 1)
	Slide 66: The setCollapsible Method (Page 2)
	Slide 68: The updateValue Method (Page 1)
	Slide 69: The updateValue Method (Page 2)
	Slide 70: The updateProgress Method
	Slide 71: The progressProperty Method
	Slide 72: The addListener Method (Page 1)
	Slide 73: The addListener Method (Page 2)

