Concurrency

Concurrency
CST242

Concurrent Processing (Page 1)

* Only computers with multiple processors can truly execute multiple instructions
concurrently

* On single-processor computers only a single instruction can execute at once ...

+ Older computers created the illusion of concurrent execution by rapidly switching
between activities

Concurrent Processing (Page 2)
* Older programming languages did not enable you to specify concurrent activities

* Historically concurrency implemented with operating system primitives available only to
experienced systems programmers
* Concurrency available in Java through the language and Java API

Concurrent Processing (Page 3)
» Single-threaded applications can lead to poor responsiveness since lengthy activities
must complete before others can begin

* Multithreading can increase performance even on single-processor and multi-processor
systems ...

* When one thread cannot proceed (e.g., it is waiting for the result of an 1/O operation
to complete), another can use the processor (or one of the processors)

Life Cycle of a Thread (Page 1)

* Thread occupies one of several thread states

* A newly instantiated thread begins its life cycle in the new state

* When the program starts the thread it enters the runnable state
+ Considered to be executing its task

Life Cycle of a Thread (Page 2)
* A runnable thread transitions to the waiting state while it waits for another thread to
perform a task ...
» Transitions back to the runnable state only when another thread notifies the waiting
thread to continue executing

Life Cycle of a Thread (Page 3)
* Runnable thread can enter timed waiting state for a specified interval of time ...

« Transitions back to the runnable state when that time interval expires or when the
event it is waiting for occurs

Life Cycle of a Thread (Page 4)

* Timed waiting and waiting threads cannot use a processor, even if one is available
* A runnable thread can transition to the timed waiting state if it provides an optional wait
interval when it is waiting for another thread to perform a task ...
* Returns to the runnable state when (1) it is notified by another thread; or (2) the

Page1

Concurrency Page 2

timed interval expires

10 Life Cycle of a Thread (Page 5)

* A thread also enters the timed waiting state when put to sleep

* Remains in timed waiting state for designated period of time; then returns to
runnable state
* A runnable thread transitions to blocked state when it attempts to perform a task that
cannot be completed immediately ...

* Must temporarily wait until task completes
+ Cannot use a processor, even if one is available

11 Life Cycle of a Thread (Page 6)
* A runnable thread enters the terminated state (sometimes called the dead state) when it
successfully completes its task ...
* Or terminates for some other reason, perhaps due to an error

12 Java’s Runnable States (Page 1)
* At operating system level, Java's runnable state encompasses two separate states:
* A runnable thread when it starts, first enters the ready state
* When thread is dispatched by the OS it enters the running state

* Operating system hides these states from the JVM (Java virtual machine) which only sees
the runnable state

13 Java’s Runnable States (Page 2)
* Timeslicing enables the threads of equal priority to share a processor in a round-robin
fashion:
* When the thread’s quantum (its timeslice) expires, returns to ready state
* Operating system dispatches another thread of equal priority, if available
« Transitions between ready and running states are handled solely by the OS

15 Creating and Executing Threads (Page 1)
* Objects instantiated from a class that implements Runnable interface represents a “task”
that can execute concurrently with other tasks
* Runnable is a member of the package java.lang (need not be imported)
* The run method (abstract method of the Runnable interface) contains code that defines
task that a Runnable object performs
« Starting the thread causes the object’s run method to be called

16 Creating and Executing Threads (Page 2)

* Example:
public class PrintTask implements Runnable

{

@Override
public void run()

(..

Concurrency

17

18

19

20

22

23

24

25

Page 3

The Thread Class

* The Java Virtual Machine allows an application to have multiple threads of execution
that are running concurrently

* The Thread class is used here to call static method sleep

* From the java.lang package (need not be imported)

The sleep Method (Page 1)

* A static method of the Thread class that causes currently executing threads to sleep:
» Temporarily ceases execution of thread; places it into a timed waiting state
» Argument specified in number of milliseconds (1000 milliseconds per second)

The sleep Method (Page 2)
* A static method of the Thread class that causes currently executing threads to sleep
(con.):
* Throws InterruptedException which is a “checked” exception (must be caught) if
sleeping thread's interrupt method is called
* Also from the java.lang package (need not be imported)

The sleep Method (Page 3)
* Format:

Thread.sleep(milliseconds);
* Example:

Thread.sleep(sleepTime);

Thread Management with Executor Framework (Page 1)

* The preferable method for managing execution of Runnable objects is to use Executor
interfaces

* "Executor” objects create and manage thread pools (a specified number of running
threads) to execute Runnables

Thread Management with Executor Framework (Page 2)
* Executor advantages over creating threads manually:
* It can reuse existing threads to eliminate new thread overhead

* Improves performance by optimizing number of threads to ensure that processor
stays busy

Thread Management with Executor Framework (Page 3)

* The Executor method execute accepts a Runnable object as its argument ...
* Assigns each Runnable object that it receives to one of the available threads in the
thread pool
* If none available, creates a new thread or waits for a thread to become available

The ExecutorService Interface and Executor Framework (Page 1)

* Interface ExecutorService
* Imported from package java.util.concurrent and extends the Executor superinterface

Concurrency

26

27

28

29

31

Page 4

import java.util.concurrent.ExecutorService;
* Declares methods for managing the life cycle of an Executor

* Objects of this type are created using static methods declared in class Executors (also
imported from package java.util.concurrent)

import java.util.concurrent.Executors;

The ExecutorService Interface and Executor Framework (Page 2)
* The static method newCachedThreadPool() is a “factory method” that fully implements
all methods for an ExecutorService object
* Including execute() and shutdown()

» Member of the class Executors which contains methods for instantiating objects for
Executor and ExecutorService classes

The ExecutorService Interface and Executor Framework (Page 3)
* Format:

ExecutorService executorServiceObject = Executors.newCachedThreadPool();
* Example:

ExecutorService executorService = Executors.newCachedThreadPool();

The execute method of the ExecutorService Interface

» Method execute of the ExecutorService class executes command sometime in the future

* Effectively starts the thread and calls the run() method when a thread becomes
available

* Format:
executorServiceObject.execute(runnableObject);
* Example:

executorService.execute(task1);

The shutdown method of the ExecutorService Interface
* Method shutdown of the ExecutorService interface initiates an orderly shutdown of
ExecutorService ...
* Previously submitted tasks are completed, but no new tasks are accepted
* Format:
executorServiceObject.shutdown();
* Example:
executorService.shutdown();

Thread Synchronization (Page 1)
* Coordinates access to shared data by multiple concurrent threads:
* Indeterminate results may occur unless access to a shared object is managed properly
* Gives only one thread at a time exclusive access to code that manipulates a shared
object while other threads wait
* When thread with exclusive access to the object finishes manipulating the object, one
of the threads that was waiting is allowed to proceed

Concurrency

32

33

34

35

36

37

Page 5

Thread Synchronization (Page 2)
* Java provides built-in monitors used to implement synchronization
* Every object has a monitor and a monitor lock which enforces mutual exclusion ...
* Monitor ensures that object’'s monitor lock is held by a maximum of one thread at any
time
Thread Synchronization (Page 3)
* To enforce mutual exclusion:
* Thread must “acquire” the lock before it can proceed with its operation

* Other threads attempting to perform an operation that requires the same lock will be
blocked until the first thread releases the lock

The synchronized Statement
* Within a method enforces mutual exclusion on a block of code
* Format:
synchronized (object)
{
Statements

}

* Where object is object whose monitor lock will be acquired (normally this)

Synchronized Methods (Page 1)
* A synchronized method is the equivalent of a synchronized statement that encloses the
entire body of a method
* Format:
public synchronized void methodName([parameters])
{..

Synchronized Methods (Page 2)
* Example:
public synchronized void add(int value)
{
sharedArray[index] = value;
index+ +;

}

Synchronized Data Sharing—Making Operations Atomic
» Simulate atomicity by ensuring that only one thread carries out a set of operations at a
time
* Immutable data shared across threads
* Declare the corresponding data fields final to indicate that variables’ values will not
change after they are initialized
private final SimpleArray sharedSimpleArray;
private final int startValue;

Concurrency

38

39

40

41

43

Page 6

The awaitTermination Method (Page 1)
* A boolean method for an ExecutorService object that blocks until (whichever happens
first):
« Either all tasks have completed execution after a shutdown request
* Or the timeout occurs
* Or the current thread is interrupted

* Returns either true if the executor terminated or false if the timeout elapsed before
termination

The awaitTermination Method (Page 2)
* Format:

executorServiceObject.awaitTermination(timeout,unit)
* timeout—the maximum time to wait

* unit—the time unit of the timeout argument
* Example:
boolean tasksEnded = executorService.awaitTermination(1, TimeUnit. MINUTES);

The TimeUnit Class (Page 1)

* The TimeUnit class represents various time level durations for concurrent operations

* Provides methods to convert across units, and to perform timing and delay operations in
these units
» TimeUnit does not maintain time information, but only helps organize and use time
representations
* Found in the java.util.concurrent package
import java.util.concurrent.TimeUnit;

The TimeUnit Class (Page 2)
* The class provides a number of enum constants:
TimeUnit.DAYS
TimeUnit. HOURS
TimeUnit. MINUTES
TimeUnit.SECONDS
TimeUnit.MILLISECONDS
TimeUnit. MICROSECONDS
TimeUnit. NANOSECONDS

Software Engineering Observation 23.1

* Place all accesses to mutable data that may be shared by multiple threads inside
synchronized statements or synchronized methods that synchronize on the same lock

» When performing multiple operations on shared data, hold the lock for the entirety of
the operation to ensure that the operation is effectively atomic

Performance Tip 23.2
* Keep the duration of synchronized statements as short as possible while maintaining the

Concurrency

45

46

47

48

49

50

51

needed synchronization
* Minimizes the wait time for blocked threads
+ Avoid performing I/O, lengthy calculations and operations that do not require
synchronization with a lock held

Good Programming Practice 23.1
* Always declare data fields that are not expected to change as final
* Primitive variables declared as final can safely be shared across threads
* Ensures that the object it refers to will be fully constructed and initialized before it is
used by the program
* Prevents reference from pointing to another object

Multithreading with JavaFX

* All JavaFX applications have a single thread, called the JavaFX application thread
+ Handles interactions with the application’s controls

* All tasks requiring interaction with application’s GUI are placed in an event queue

* Then tasks are executed sequentially by the JavaFX application thread as needed

The Task Class (Page 1)

» Task is an abstract class used in JavaFX to create objects that perform “long-running”
computations

* Continually updates JavaFX components from event dispatch thread based on the
computational results

The Task Class (Page 2)
* Imported from package “javafx.concurrent”
import javafx.concurrent.Task;

* Implements interface Runnable
* Therefore Task objects are threads

The Task Class (Page 3)

» To use the generic class Task:
* The new class should extend the abstract class Task and ...
* Override Task's abstract method call

The Task Class (Page 4)
* Format:
public class ClassName extends Task < GenericType>

(..

» Example:
public class FibonacciTask extends Task<Long>

(..

The Call Method (Page 1)

* The abstract call method is invoked when Task is executed
* It must be overridden and implemented by its subclasses, and it performs the

Page 7

Concurrency Page 8

background thread logic

* Only superclass methods updateProgress, updateMessage, and updateTitle methods of
Task may be called from within method call

52 The Call Method (Page 2)
* Task is a generic class so its call method returns an object and its access modified is
protected:
@Override

protected GenericType call()
{..
* The GenericType may be:
* Long for integer types
* Double for floating point types

53 The Call Method (Page 3)
* Example:
@Override
protected Long call()
{..

54 The updateMessage Method (Page 1)
* Inherited Task method updateMessage updates Task's message property in the JavaFX
application thread while it is running
* Usually placed in the call method
* Does not wait until the task is completed unlike method getMessage

55 The updateMessage Method (Page 2)
* Format:
updateMessage(string);
* Example:
updateMessage("Calculating...");

56 The messageProperty Method (Page 1)

* The method messageProperty in a JavaFX application thread gets the value of the
message property from the task
* It is the String argument returned from the updateMessage method in superclass Task

57 The messageProperty Method (Page 2)
* Format:
taskName.messageProperty()

* Example:
labelMessage.textProperty().bind(task.messageProperty());

58 The textProperty.bind Method (Page 1)

* Review: Binding methods are used to update property values of JavaFX nodes
dynamically during runtime

Concurrency

59

60

61

62

63

* The textProperty.bind method for any JavaFX control “binds” the Text property of that
control to a property value in a task object
*» Any time the value changes in the task, the Text property automatically updates

The textProperty.bind Method (Page 2)

* Format:
controlName.textProperty().bind(taskValue);

* Example:
labelMessage.textProperty().bind(task.messageProperty());
* Binds the text property of labelMessage to the Task object’'s message

The setOnRunning Method (Page 1)
» Method setOnRunning from the Task class registers a listener method that is invoked
when the Task “enters” the running state (starts to run)
* May be registered as a lambda expression
* This occurs when the Task has been assigned a processor and begins executing its call
method

The setOnRunning Method (Page 2)

* Format:
taskName.setOnRunning((eventParameter) -> ...)
* Example:

task.setOnRunning((runningEvent) ->
{
labelFibonacci.setText("");
buttonGo.setDisable(true);
1)

The setOnSucceeded Method (Page 1)
* Method setOnSucceeded from the Task class registers a listener method that is invoked
when the Task "enters” the succeeded state (is completed)
» May be registered as a lambda expression
* In this case, the Task’s getValue method (from interface Worker) is called to obtain the
result from the call method

The setOnSucceeded Method (Page 2)
* Format:
taskName.setOnSucceeded((eventParameter) -> ...)
* Example:
task.setOnSucceeded((succeededEvent) ->
{
labelFibonacci.setText(task.getValue().toString());
buttonGo.setDisable(false);

| Bk

Page g

Concurrency

64

65

66

68

69

70

The getValue Method
* Method getValue from class Task returns the return value from call method when the
task is completed
* Format:
taskName.getValue()
* Example:
task.setOnSucceeded((succeededEvent) ->
{
labelFibonacci.setText(task.getValue().toString())
}

The setCollapsible Method (Page 1)
* For JavaFX TitledPane control, boolean method setCollapsible sets a “collapse” arrow to
visible so as to collapse and hide the pane (or not)
* Default value is true
* Set to false, lets the TitledPane be used as a "visual” container without collapsing
* Only for visual effect as in “Concurrency3.java”

The setCollapsible Method (Page 2)
* Format:

titledPaneObject.setCollapsible(true | false);
* Example:

titledPaneWithFibonacciTask.setCollapsible(false);

The updateValue Method (Page 1)

* The inherited Task method updateValue returns a Task's value property in the JavaFX
application thread while it is running

* Usually placed in call method

* Does not wait until the task is completed like method getValue

The updateValue Method (Page 2)
* Format:

updateValue(value);
* Example:

updateValue(i);

The updateProgress Method
* The method updateProgress returns a Task's workDone, totalWork and progress
properties while it is running
* Format:
updateProgress(workDone, max);
* workDone is the current value from -1 to max
* max is the terminal value
* Example:

Page 10

Concurrency

71

72

73

Page1a

updateProgress(i + 1, primes.length);

The progressProperty Method
* Returns a double value which represents the progress of a Task
* Format:
taskObject progressProperty()
* Example:
progressBar.progressProperty().bind(task.progressProperty());

The addListener Method (Page 1)
» Method valueProperty().addListener() of class Task creates event handler that executes
every time Task's value property updates
* From updateValue method of the Task
* May be registered as a lambda expression that returns:
* observable—value returned from the object
+ oldValue—previous value before it was updated
* newValue—current value

The addListener Method (Page 2)
* Format:

taskName.valueProperty().addListener((observable, oldValue, newValue)
v)

* Example:
task.valueProperty().addListener((observable, oldValue, newValue) ->
{

primes.add(newValue);

Bk

	Slide 1: Concurrency
	Slide 2: Concurrent Processing (Page 1)
	Slide 3: Concurrent Processing (Page 2)
	Slide 4: Concurrent Processing (Page 3)
	Slide 5: Life Cycle of a Thread (Page 1)
	Slide 6: Life Cycle of a Thread (Page 2)
	Slide 7: Life Cycle of a Thread (Page 3)
	Slide 9: Life Cycle of a Thread (Page 4)
	Slide 10: Life Cycle of a Thread (Page 5)
	Slide 11: Life Cycle of a Thread (Page 6)
	Slide 12: Java’s Runnable States (Page 1)
	Slide 13: Java’s Runnable States (Page 2)
	Slide 15: Creating and Executing Threads (Page 1)
	Slide 16: Creating and Executing Threads (Page 2)
	Slide 17: The Thread Class
	Slide 18: The sleep Method (Page 1)
	Slide 19: The sleep Method (Page 2)
	Slide 20: The sleep Method (Page 3)
	Slide 22: Thread Management with Executor Framework (Page 1)
	Slide 23: Thread Management with Executor Framework (Page 2)
	Slide 24: Thread Management with Executor Framework (Page 3)
	Slide 25: The ExecutorService Interface and Executor Framework (Page 1)
	Slide 26: The ExecutorService Interface and Executor Framework (Page 2)
	Slide 27: The ExecutorService Interface and Executor Framework (Page 3)
	Slide 28: The execute method of the ExecutorService Interface
	Slide 29: The shutdown method of the ExecutorService Interface
	Slide 31: Thread Synchronization (Page 1)
	Slide 32: Thread Synchronization (Page 2)
	Slide 33: Thread Synchronization (Page 3)
	Slide 34: The synchronized Statement
	Slide 35: Synchronized Methods (Page 1)
	Slide 36: Synchronized Methods (Page 2)
	Slide 37: Synchronized Data Sharing—Making Operations Atomic
	Slide 38: The awaitTermination Method (Page 1)
	Slide 39: The awaitTermination Method (Page 2)
	Slide 40: The TimeUnit Class (Page 1)
	Slide 41: The TimeUnit Class (Page 2)
	Slide 43: Software Engineering Observation 23.1
	Slide 44: Performance Tip 23.2
	Slide 45: Good Programming Practice 23.1
	Slide 46: Multithreading with JavaFX
	Slide 47: The Task Class (Page 1)
	Slide 48: The Task Class (Page 2)
	Slide 49: The Task Class (Page 3)
	Slide 50: The Task Class (Page 4)
	Slide 51: The Call Method (Page 1)
	Slide 52: The Call Method (Page 2)
	Slide 53: The Call Method (Page 3)
	Slide 54: The updateMessage Method (Page 1)
	Slide 55: The updateMessage Method (Page 2)
	Slide 56: The messageProperty Method (Page 1)
	Slide 57: The messageProperty Method (Page 2)
	Slide 58: The textProperty.bind Method (Page 1)
	Slide 59: The textProperty.bind Method (Page 2)
	Slide 60: The setOnRunning Method (Page 1)
	Slide 61: The setOnRunning Method (Page 2)
	Slide 62: The setOnSucceeded Method (Page 1)
	Slide 63: The setOnSucceeded Method (Page 2)
	Slide 64: The getValue Method
	Slide 65: The setCollapsible Method (Page 1)
	Slide 66: The setCollapsible Method (Page 2)
	Slide 68: The updateValue Method (Page 1)
	Slide 69: The updateValue Method (Page 2)
	Slide 70: The updateProgress Method
	Slide 71: The progressProperty Method
	Slide 72: The addListener Method (Page 1)
	Slide 73: The addListener Method (Page 2)

