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Concurrent Processing (Page 1)

* Only computers with multiple processors can truly execute multiple instructions
concurrently

* On single-processor computers only a single instruction can execute at once ...

+ Older computers created the illusion of concurrent execution by rapidly switching
between activities

Concurrent Processing (Page 2)
* Older programming languages did not enable you to specify concurrent activities

* Historically concurrency implemented with operating system primitives available only to
experienced systems programmers
* Concurrency available in Java through the language and Java API

Concurrent Processing (Page 3)
» Single-threaded applications can lead to poor responsiveness since lengthy activities
must complete before others can begin

* Multithreading can increase performance even on single-processor and multi-processor
systems ...

* When one thread cannot proceed (e.g., it is waiting for the result of an 1/O operation
to complete), another can use the processor (or one of the processors)

Life Cycle of a Thread (Page 1)

* Thread occupies one of several thread states

* A newly instantiated thread begins its life cycle in the new state

* When the program starts the thread it enters the runnable state
+ Considered to be executing its task

Life Cycle of a Thread (Page 2)
* A runnable thread transitions to the waiting state while it waits for another thread to
perform a task ...
» Transitions back to the runnable state only when another thread notifies the waiting
thread to continue executing

Life Cycle of a Thread (Page 3)
* Runnable thread can enter timed waiting state for a specified interval of time ...

« Transitions back to the runnable state when that time interval expires or when the
event it is waiting for occurs

Life Cycle of a Thread (Page 4)

* Timed waiting and waiting threads cannot use a processor, even if one is available
* A runnable thread can transition to the timed waiting state if it provides an optional wait
interval when it is waiting for another thread to perform a task ...
* Returns to the runnable state when (1) it is notified by another thread; or (2) the
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timed interval expires

10 Life Cycle of a Thread (Page 5)

* A thread also enters the timed waiting state when put to sleep

* Remains in timed waiting state for designated period of time; then returns to
runnable state
* A runnable thread transitions to blocked state when it attempts to perform a task that
cannot be completed immediately ...

* Must temporarily wait until task completes
+ Cannot use a processor, even if one is available

11 Life Cycle of a Thread (Page 6)
* A runnable thread enters the terminated state (sometimes called the dead state) when it
successfully completes its task ...
* Or terminates for some other reason, perhaps due to an error

12 Java’s Runnable States (Page 1)
* At operating system level, Java's runnable state encompasses two separate states:
* A runnable thread when it starts, first enters the ready state
* When thread is dispatched by the OS it enters the running state

* Operating system hides these states from the JVM (Java virtual machine) which only sees
the runnable state

13 Java’s Runnable States (Page 2)
* Timeslicing enables the threads of equal priority to share a processor in a round-robin
fashion:
* When the thread’s quantum (its timeslice) expires, returns to ready state
* Operating system dispatches another thread of equal priority, if available
« Transitions between ready and running states are handled solely by the OS

15 Creating and Executing Threads (Page 1)
* Objects instantiated from a class that implements Runnable interface represents a “task”
that can execute concurrently with other tasks
* Runnable is a member of the package java.lang (need not be imported)
* The run method (abstract method of the Runnable interface) contains code that defines
task that a Runnable object performs
« Starting the thread causes the object’s run method to be called

16 Creating and Executing Threads (Page 2)

* Example:
public class PrintTask implements Runnable

{

@Override
public void run()

(..
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The Thread Class

* The Java Virtual Machine allows an application to have multiple threads of execution
that are running concurrently

* The Thread class is used here to call static method sleep

* From the java.lang package (need not be imported)

The sleep Method (Page 1)

* A static method of the Thread class that causes currently executing threads to sleep:
» Temporarily ceases execution of thread; places it into a timed waiting state
» Argument specified in number of milliseconds (1000 milliseconds per second)

The sleep Method (Page 2)
* A static method of the Thread class that causes currently executing threads to sleep
(con.):
* Throws InterruptedException which is a “checked” exception (must be caught) if
sleeping thread's interrupt method is called
* Also from the java.lang package (need not be imported)

The sleep Method (Page 3)
* Format:

Thread.sleep(milliseconds);
* Example:

Thread.sleep(sleepTime);

Thread Management with Executor Framework (Page 1)

* The preferable method for managing execution of Runnable objects is to use Executor
interfaces

* "Executor” objects create and manage thread pools (a specified number of running
threads) to execute Runnables

Thread Management with Executor Framework (Page 2)
* Executor advantages over creating threads manually:
* It can reuse existing threads to eliminate new thread overhead

* Improves performance by optimizing number of threads to ensure that processor
stays busy

Thread Management with Executor Framework (Page 3)

* The Executor method execute accepts a Runnable object as its argument ...
* Assigns each Runnable object that it receives to one of the available threads in the
thread pool
* If none available, creates a new thread or waits for a thread to become available

The ExecutorService Interface and Executor Framework (Page 1)

* Interface ExecutorService
* Imported from package java.util.concurrent and extends the Executor superinterface
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import java.util.concurrent.ExecutorService;
* Declares methods for managing the life cycle of an Executor

* Objects of this type are created using static methods declared in class Executors (also
imported from package java.util.concurrent)

import java.util.concurrent.Executors;

The ExecutorService Interface and Executor Framework (Page 2)
* The static method newCachedThreadPool() is a “factory method” that fully implements
all methods for an ExecutorService object
* Including execute() and shutdown()

» Member of the class Executors which contains methods for instantiating objects for
Executor and ExecutorService classes

The ExecutorService Interface and Executor Framework (Page 3)
* Format:

ExecutorService executorServiceObject = Executors.newCachedThreadPool();
* Example:

ExecutorService executorService = Executors.newCachedThreadPool();

The execute method of the ExecutorService Interface

» Method execute of the ExecutorService class executes command sometime in the future

* Effectively starts the thread and calls the run() method when a thread becomes
available

* Format:
executorServiceObject.execute( runnableObject );
* Example:

executorService.execute(task1);

The shutdown method of the ExecutorService Interface
* Method shutdown of the ExecutorService interface initiates an orderly shutdown of
ExecutorService ...
* Previously submitted tasks are completed, but no new tasks are accepted
* Format:
executorServiceObject.shutdown();
* Example:
executorService.shutdown();

Thread Synchronization (Page 1)
* Coordinates access to shared data by multiple concurrent threads:
* Indeterminate results may occur unless access to a shared object is managed properly
* Gives only one thread at a time exclusive access to code that manipulates a shared
object while other threads wait
* When thread with exclusive access to the object finishes manipulating the object, one
of the threads that was waiting is allowed to proceed
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Thread Synchronization (Page 2)
* Java provides built-in monitors used to implement synchronization
* Every object has a monitor and a monitor lock which enforces mutual exclusion ...
* Monitor ensures that object’'s monitor lock is held by a maximum of one thread at any
time
Thread Synchronization (Page 3)
* To enforce mutual exclusion:
* Thread must “acquire” the lock before it can proceed with its operation

* Other threads attempting to perform an operation that requires the same lock will be
blocked until the first thread releases the lock

The synchronized Statement
* Within a method enforces mutual exclusion on a block of code
* Format:
synchronized (object)
{
Statements

}

* Where object is object whose monitor lock will be acquired (normally this)

Synchronized Methods (Page 1)
* A synchronized method is the equivalent of a synchronized statement that encloses the
entire body of a method
* Format:
public synchronized void methodName( [parameters] )
{..

Synchronized Methods (Page 2)
* Example:
public synchronized void add(int value)
{
sharedArray[index] = value;
index+ +;

}

Synchronized Data Sharing—Making Operations Atomic
» Simulate atomicity by ensuring that only one thread carries out a set of operations at a
time
* Immutable data shared across threads
* Declare the corresponding data fields final to indicate that variables’ values will not
change after they are initialized
private final SimpleArray sharedSimpleArray;
private final int startValue;



Concurrency

38

39

40

41

43

Page 6

The awaitTermination Method (Page 1)
* A boolean method for an ExecutorService object that blocks until (whichever happens
first):
« Either all tasks have completed execution after a shutdown request
* Or the timeout occurs
* Or the current thread is interrupted

* Returns either true if the executor terminated or false if the timeout elapsed before
termination

The awaitTermination Method (Page 2)
* Format:

executorServiceObject.awaitTermination(timeout,unit)
* timeout—the maximum time to wait

* unit—the time unit of the timeout argument
* Example:
boolean tasksEnded = executorService.awaitTermination(1, TimeUnit. MINUTES);

The TimeUnit Class (Page 1)

* The TimeUnit class represents various time level durations for concurrent operations

* Provides methods to convert across units, and to perform timing and delay operations in
these units
» TimeUnit does not maintain time information, but only helps organize and use time
representations
* Found in the java.util.concurrent package
import java.util.concurrent.TimeUnit;

The TimeUnit Class (Page 2)
* The class provides a number of enum constants:
TimeUnit.DAYS
TimeUnit. HOURS
TimeUnit. MINUTES
TimeUnit.SECONDS
TimeUnit.MILLISECONDS
TimeUnit. MICROSECONDS
TimeUnit. NANOSECONDS

Software Engineering Observation 23.1

* Place all accesses to mutable data that may be shared by multiple threads inside
synchronized statements or synchronized methods that synchronize on the same lock

» When performing multiple operations on shared data, hold the lock for the entirety of
the operation to ensure that the operation is effectively atomic

Performance Tip 23.2
* Keep the duration of synchronized statements as short as possible while maintaining the
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needed synchronization
* Minimizes the wait time for blocked threads
+ Avoid performing I/O, lengthy calculations and operations that do not require
synchronization with a lock held

Good Programming Practice 23.1
* Always declare data fields that are not expected to change as final
* Primitive variables declared as final can safely be shared across threads
* Ensures that the object it refers to will be fully constructed and initialized before it is
used by the program
* Prevents reference from pointing to another object

Multithreading with JavaFX

* All JavaFX applications have a single thread, called the JavaFX application thread
+ Handles interactions with the application’s controls

* All tasks requiring interaction with application’s GUI are placed in an event queue

* Then tasks are executed sequentially by the JavaFX application thread as needed

The Task Class (Page 1)

» Task is an abstract class used in JavaFX to create objects that perform “long-running”
computations

* Continually updates JavaFX components from event dispatch thread based on the
computational results

The Task Class (Page 2)
* Imported from package “javafx.concurrent”
import javafx.concurrent.Task;

* Implements interface Runnable
* Therefore Task objects are threads

The Task Class (Page 3)

» To use the generic class Task:
* The new class should extend the abstract class Task and ...
* Override Task's abstract method call

The Task Class (Page 4)
* Format:
public class ClassName extends Task < GenericType>

(..

» Example:
public class FibonacciTask extends Task<Long>

(..

The Call Method (Page 1)

* The abstract call method is invoked when Task is executed
* It must be overridden and implemented by its subclasses, and it performs the
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background thread logic

* Only superclass methods updateProgress, updateMessage, and updateTitle methods of
Task may be called from within method call

52 The Call Method (Page 2)
* Task is a generic class so its call method returns an object and its access modified is
protected:
@Override

protected GenericType call()
{..
* The GenericType may be:
* Long for integer types
* Double for floating point types

53 The Call Method (Page 3)
* Example:
@Override
protected Long call()
{..

54 The updateMessage Method (Page 1)
* Inherited Task method updateMessage updates Task's message property in the JavaFX
application thread while it is running
* Usually placed in the call method
* Does not wait until the task is completed unlike method getMessage

55 The updateMessage Method (Page 2)
* Format:
updateMessage(string);
* Example:
updateMessage("Calculating...");

56 The messageProperty Method (Page 1)

* The method messageProperty in a JavaFX application thread gets the value of the
message property from the task
* It is the String argument returned from the updateMessage method in superclass Task

57 The messageProperty Method (Page 2)
* Format:
taskName.messageProperty()

* Example:
labelMessage.textProperty().bind( task.messageProperty() );

58 The textProperty.bind Method (Page 1)

* Review: Binding methods are used to update property values of JavaFX nodes
dynamically during runtime
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* The textProperty.bind method for any JavaFX control “binds” the Text property of that
control to a property value in a task object
*» Any time the value changes in the task, the Text property automatically updates

The textProperty.bind Method (Page 2)

* Format:
controlName.textProperty().bind(taskValue);

* Example:
labelMessage.textProperty().bind( task.messageProperty() );
* Binds the text property of labelMessage to the Task object’'s message

The setOnRunning Method  (Page 1)
» Method setOnRunning from the Task class registers a listener method that is invoked
when the Task “enters” the running state (starts to run)
* May be registered as a lambda expression
* This occurs when the Task has been assigned a processor and begins executing its call
method

The setOnRunning Method  (Page 2)

* Format:
taskName.setOnRunning( (eventParameter) -> ... )
* Example:

task.setOnRunning( (runningEvent) ->
{
labelFibonacci.setText("");
buttonGo.setDisable(true);
1)

The setOnSucceeded Method (Page 1)
* Method setOnSucceeded from the Task class registers a listener method that is invoked
when the Task "enters” the succeeded state (is completed)
» May be registered as a lambda expression
* In this case, the Task’s getValue method (from interface Worker) is called to obtain the
result from the call method

The setOnSucceeded Method (Page 2)
* Format:
taskName.setOnSucceeded( (eventParameter) -> ...)
* Example:
task.setOnSucceeded( (succeededEvent) ->
{
labelFibonacci.setText( task.getValue().toString() );
buttonGo.setDisable(false);

| Bk
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The getValue Method
* Method getValue from class Task returns the return value from call method when the
task is completed
* Format:
taskName.getValue()
* Example:
task.setOnSucceeded( (succeededEvent) ->
{
labelFibonacci.setText( task.getValue().toString() )
}

The setCollapsible Method (Page 1)
* For JavaFX TitledPane control, boolean method setCollapsible sets a “collapse” arrow to
visible so as to collapse and hide the pane (or not)
* Default value is true
* Set to false, lets the TitledPane be used as a "visual” container without collapsing
* Only for visual effect as in “Concurrency3.java”

The setCollapsible Method (Page 2)
* Format:

titledPaneObject.setCollapsible(true | false);
* Example:

titledPaneWithFibonacciTask.setCollapsible(false);

The updateValue Method (Page 1)

* The inherited Task method updateValue returns a Task's value property in the JavaFX
application thread while it is running

* Usually placed in call method

* Does not wait until the task is completed like method getValue

The updateValue Method (Page 2)
* Format:

updateValue(value);
* Example:

updateValue(i);

The updateProgress Method
* The method updateProgress returns a Task's workDone, totalWork and progress
properties while it is running
* Format:
updateProgress(workDone, max);
* workDone is the current value from -1 to max
* max is the terminal value
* Example:
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updateProgress(i + 1, primes.length);

The progressProperty Method
* Returns a double value which represents the progress of a Task
* Format:
taskObject progressProperty()
* Example:
progressBar.progressProperty().bind( task.progressProperty() );

The addListener Method (Page 1)
» Method valueProperty().addListener() of class Task creates event handler that executes
every time Task's value property updates
* From updateValue method of the Task
* May be registered as a lambda expression that returns:
* observable—value returned from the object
+ oldValue—previous value before it was updated
* newValue—current value

The addListener Method (Page 2)
* Format:

taskName.valueProperty().addListener( (observable, oldValue, newValue)
v )

* Example:
task.valueProperty().addListener( (observable, oldValue, newValue) ->
{

primes.add(newValue);

Bk
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