
CST242—Abstract Classes and Interfaces Page 1

Objected-Oriented Programming: Abstract Classes and Interfaces

CST242

Polymorphism (Page 1)

• Programmers should create systems that are easily extensible

– Easy to add to later—capable of being extended

• Superclasses are designed as more general:

– Able to process all existing and new subclasses

– Classes that are added later will not require modification to the general part of the

program (its superclass)

Polymorphism (Page 2)

• Late binding—a method from one class is not tied to method that calls it from another

class until run-time (when it is instantiated)

– Also called dynamic binding

– The opposite of early binding in which the two methods are compiled together

• Late binding makes it possible to add new classes to the hierarchy even after the base

class compiles

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

2

3

A Polymorphism Example

Polymorphism (Page 3)

• Consider the Shape class example:

– Shape has:

• An attribute named point where shape starts to draw

• A method named center() that centers the shape when drawn by calling a method

named position()

– Classes Circle and Rectangle both extend Shape

• Circle has attribute radius; Rectangle has attributes length and width

• Circle and radius have individual methods named draw() that draw the shapes,

both of which are called by the center() method of Shape

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

4

5

A Polymorphism Example

Polymorphism (Page 4)

• Consider the Shape class example (con):

– With early binding, if new class Triangle is created after Shape is compiled, method

draw() of either Circle or Rectangle will have been bound previously to center()

– With late binding (essentially the equivalent of polymorphism), method draw() of

Triangle (or Circle or Rectangle) correctly binds to center() at run-time

– Java uses late binding exclusively

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

6

7

A Polymorphism Example

The Keyword abstract (Page 1)

• Classes that are declared to be abstract cannot be instantiated …

– No objects may be created from it

• This is true for a superclass that only has the function of supporting subclasses …

– Such classes are called abstract superclasses

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

8

9

CST242—Abstract Classes and Interfaces Page 2

– Such classes are called abstract superclasses

The Keyword abstract (Page 2)

• Example:

private abstract class Shape extends Object

• Classes that may instantiate objects are called concrete classes

– E.g. the Circle, Rectangle and Triangle classes

Declaring abstract Methods (Page 1)

• A method may be declared in a superclass declaration as abstract

• As such the abstract method only may exist in an abstract class (or an interface)

Declaring abstract Methods (Page 2)

• The declaration is only a reference since:

– It contains no statements

– Requires implementation of the abstract method in all of its subclasses (so that the

required methods are not forgotten in the subclasses)

– Any call to the local abstract method is overridden because it will be handled by

methods of same name in the subclasses (uses redirection)

– In fact this is the only way that a superclass can call methods of its direct subclass

Declaring abstract Methods (Page 3)

• Format:

public abstract type/void methodName([parameterList]);

– The parameterList must match in number of variables and type the implemented

method

– Methods that are abstract may be overloaded

• Example:

public abstract void draw();

– Note the placement of the semicolon (;) at end of the method header (signature)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

10

11

12

13

• Shape.java

The Keyword final (Review)

• Used to indicate that value of an identifier may not change after it has been declared

and initialized

– Often used for defining a constant

• Example:

double final CREDITS = 7;

Declaring a Class as final

• If a class is declared to be final, it must be the bottom class in an inheritance hierarchy

– It may not have any subclasses

• Example:

private final class Circle extends Shape

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

16

17

• Triangle.java

Interfaces

• Contains abstract method definitions needed by several classes and perhaps within

several class hierarchies

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

19

CST242—Abstract Classes and Interfaces Page 3

• Contains abstract method definitions needed by several classes and perhaps within

several class hierarchies

– An alternate to declaring them in a superclass

• If a method is declared in an interface, all classes that “implement” the interface must

declare a method with the same signature

The Keyword interface

• Used to declare an interface (replaces the keyword class in the header signature)

– As with a class name, the name of the interface must be identical to the “*.java”

filename

• Example:

public interface Color

{

public abstract void setColor();

public abstract String getColor();

}

– Filename for the above must be “Color.java”

Implementing Interfaces

• Interfaces are not inherited in subclasses but rather they are implemented

• Classes may implement several interfaces …

– Sort of like multiple inheritance …

– Unlike subclasses which may inherit (extend) from only one superclass

The Keyword implements

• Used to implement an interface

• Format:

public class SubClassName extends SuperClassName implements InterfaceName1[,

InterfaceName2, …]

{ …

• Example:

public class Circle extends Shape implements Color

{ …

Declaring Constants in Interfaces (Page 1)

• Besides abstract method references, the only other elements that may be declared in

interfaces are constants

• These constants can be accessed by all classes in which the interface is implemented

• The constant identifier must be:

– Declared as final and may additionally be declared as static (they are static by

default)

– Assigned a value which may not be updated

Declaring Constants in Interfaces (Page 2)

• Format:

[public] [static] [final] type CONSTANT_NAME = value;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

20

21

22

23

24

CST242—Abstract Classes and Interfaces Page 4

• Format:

[public] [static] [final] type CONSTANT_NAME = value;

• Example:

public interface Color

{

public static final String RED = "Red";

public static final String LIGHT_BLUE = "Light Blue";

}

Interface Programming Practice (Page 1)

• According to the “Java Language Specification”, in standard practice within an

interface:

– Methods are declared without the keywords public and abstract because these

specifications are redundant

– Constants are declared without the keywords public, static and final because they

also are redundant

Interface Programming Practice (Page 2)

• Example:

public interface Color

{

void setColor();

String getColor();

String RED = "Red";

String LIGHT_BLUE = "Light Blue";

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

25

26

