CST242—The ATM App Page 1

1 Java: The ATM App
CST242

2 The Analysis Stage
+ The analysis state focuses on defining the problem to be solved which requires two
things
— Solve the problem right (correctly)
— Solve the right problem
* It is the job of system analysts to collect the requirements that indicate the specific
problem to solve

3 Requirements Documents (Page 1)
+ A requirements document is a document that contains all the requirements to a
certain system
+ Typically written from a user’s point-of-view by the user/client to allow people to
understand what the system should do

4 Requirements Documents (Page 2)
 Usually it is the result of detailed requirements gathering which might include
interviews with:
— Possible users of the system
— Specialists in fields related to the system

5 Requirements Documents (Page 3)
* The requirements document generally should avoid anticipating or defining “how"” the
system will do its job
— This allows interface designers and engineers to later use their expertise to provide
the optimal solution to the requirements

6 Requirement Document for ATM (Page 1)
» A bank plans to install a new ATM to allow customers to perform financial transactions
* Each user has one bank account

* ATM users should be able to view their account balance, withdraw cash and deposit
funds

7 Requirement Document for ATM (Page 2)
* The user interface of the ATM contains:
— A screen that displays messages to the user
— A keypad that receives numeric input from the user (only digits and an <Enter> key)
— A cash dispenser that dispenses cash to the user
— A deposit slot that receives deposit envelopes from the user

8 Requirement Document for ATM (Page 3)
* The cash dispenser starts each day loaded with 500 $20 bills
+ An ATM session consists of authenticating a user based on an account number and

CST242—The ATM App

10

11

12

13

15

16

personal identification number (PIN)

Requirement Document for ATM (Page 4)
+ ATM transaction software is being developed at now—the hardware “will be
developed later”

* This version should use the computer’s screen to simulate the ATM screen and the
computer’s keyboard to simulate the keypad:

—The ATM asks the user to type the account number on the keypad rather than
reading it from a bank card

— All output including receipts (not printed) appears on the screen

Requirement Document for ATM (Page 5)
* To authenticate a user and perform transactions, ATM must interact with the bank'’s
information database of accounts
* For each account in the database is stored:
— An account number
—-APIN
— The account balance

Requirement Document for ATM (Page 6)

» Upon approaching the ATM, the user should experience the following:
1. The screen displays Welcome! and prompts the user to enter an account number
2. The user enters a five-digit account number using the keypad

3. The screen prompts the user to enter the PIN that is associated with that account
number

4. The user enters a five-digit PIN using the keypad

Requirement Document for ATM (Page 7)
+ Upon approaching the ATM, the user should experience the following (con.):

5. If the user is authenticated, the screen displays the main menu; otherwise the
screen displays an error message and the ATM returns to Step 1

Requirement Document for ATM (Page 8)
* The main menu should contain a numbered option for each of the three transaction
types:
— Balance inquiry (option 1)
— Withdrawal (option 2)
— Deposit (option 3)
* It also should also contain an option to exit the system (option 4)
+ The user selects an option by typing a number onto the keypad

Requirement Document for ATM (Page 9)

« If the user enters 1 to make a balance inquiry, the screen displays the user’s account
balance

Page 2

CST242—The ATM App

17

19

20

21

22

— The ATM must retrieve the account balance (both total balance and available

balance) from the bank’s database to do so

Requirement Document for ATM (Page 10)

« |f the user enters 2 to make a withdrawal:

1.

The screen displays a menu containing standard withdrawal amounts:
+ $20 (option 1)

* $40 (option 2)

+ $60 (option 3)

+ $100 (option 4)

+ $200 (option 5)

The menu also contains an option to cancel the transaction (option 6)

Requirement Document for ATM (Page 11)

« If the user enters 2 to make a withdrawal (con.):

2.
3.

The user enters a menu selection using the keypad

If the withdrawal amount is greater than the account balance (available balance),
the screen displays that message, tells the user to select a smaller amount and the
ATM returns to step 1

If the withdrawal amount is less than or equal to the account balance, the ATM
proceeds to step 4

If the user chooses to cancel the transaction, the ATM displays the main menu and
waits for input

Requirement Document for ATM (Page 12)

« If the user enters 2 to make a withdrawal (con.):

4.

5.
6.
7.

If the cash dispenser contains enough cash, the ATM proceeds to step 5
Otherwise the screen displays a message indicating the problem, prompts the user
to select a smaller amount and then returns to step 7

The ATM debits (subtracts) the withdrawal amount from the user’s account
The cash dispenser "dispenses” amount to the user
The screen displays a message reminding the user to take the money

Requirement Document for ATM (Page 13)

« If the user enters 3 to make a deposit:

1.
2.

The screen prompts the user to enter a deposit amount or 0 (zero) to cancel

The user enters a deposit amount or 0 (zero) using the keypad

Note: The keypad has no decimal point or dollar sign so the user only can type
digits; the ATM then divides the input by 100 to get dollars and cents (for example
1234 + 100 = 12.34)

Requirement Document for ATM (Page 14)

« If the user enters 3 to make a deposit (con.):

3

. If the user specifies a deposit amount, the ATM proceeds to step 4

If the user chooses to cancel the transaction, the ATM displays the main menu and

Page 3

CST242—The ATM App Page 4

23

24

25

26

27

28

waits for input
4. The screen displays a message telling the user to insert a deposit envelope

Requirement Document for ATM (Page 15)
« If the user enters 3 to make a deposit (con.):

5. If the deposit slot receives the envelope within two minutes, ATM credits user’s
account (money not immediately available: verify cash in envelope or checks must
clear—credit available balance once this occurs)

If deposit slot does not receive the envelope, screen prints that message
Either way the ATM then displays the main menu and waits for user input

Requirement Document for ATM (Page 16)
« After the ATM executes a transaction, it should return to the main menu so that the
user can perform additional transactions

* If the user exits the system, the screen should display a “Thank You Message” and then
display the "Welcome Message” for the next user

Use Case Modeling (Page 1)

*+ Use case modeling involves identifying the use cases of the system

» Each use case represents a specific capability (action or event) that the system
provides to its clients (actors)

* The goal is to show the kinds of interactions users will have with the system without
providing details

Use Case Modeling (Page 2)

* In an ATM system the use cases might be:
—"View Account Balance”
— "Withdraw Cash”
- "Deposit Funds”
— "Transfer Funds between Accounts”
—"Make a payment”

 This ATM implements the first three

Use Case Diagrams (Page 1)

+ A use case diagram (or case diagram) is a simple form of UML diagram which is a
representation of a user's interaction with the system

* Created during the analysis (the first) stage of the software life cycle to identify the
different types of users of a system and the different use cases
— Shows relationship between user and different use cases

+ Often accompanied by informal text that gives more detail like the text in
requirements documents

Use Case Diagrams (Page 2)

* It has been said before that “Use case diagrams are the blueprints for your system"”—
McLaughlin, B., Pollice, G., & West, D (2006)

+ Use case diagrams convey the intent of the system in a more simplified manner to

CST242—The ATM App Page 5

stakeholders
— Stakeholders are the individuals, group or organization who may affect or be
affected by the system
* They are "interpreted more completely than class diagrams"—Siau, K. & Lee, L. (2004)

29 Use Case Diagrams (Page 3)

* The use case diagram is the first of 13 diagram types that are used for documenting
system models according to the UML 2 standard

* Other diagrams are:
— Class diagrams
— State machine diagrams
— Activity diagrams
— Communication diagrams (or collaboration diagrams)
— Sequence diagrams

32 Identifying the Classes in a System (Page 1)

« It is possible to identify the classes in a system by looking at the nouns and noun
phrases in the requirements document, e.g.:

bank money/funds account number ATM

screen PIN user keypad

bank database customer cash dispenser balance inquiry
transaction $20 bill/cash withdrawalaccount

deposit slip deposit balance deposit envelope

33 Identifying the Classes in a System (Page 2)
* The following can be eliminated:

—"bank” as it is not part of the ATM

— "customer” and "user” since they merely interact with the ATM and are not part of it

—"$20 bill/cash” is not actually being automated but can be managed and
represented by the cash dispenser

— "deposit envelope” since out system does not say what happens to them after they
are deposited; simply acknowledging that the deposit slot receives them is
satisfactory

34 Identifying the Classes in a System (Page 3)
* The following can be eliminated (con.):

— "balance” and "account number” and "PIN" represent attributes rather than
behaviors

— "transaction” is more a generalized notion of three specific behaviors, “balance
inquiry” and “withdrawal” and “deposit”
* The object-oriented notion of inheritance will bring “transaction” back later for its
common elements with the three specific behaviors

35 Identifying the Classes in a System (Page 4)
* This leaves the remaining probable system classes:

CST242—The ATM App

36

38

40

42

43

-ATM

—Screen

- Keypad

— Cash Dispenser
— Deposit Slot

— Account

— Bank Database
— Balance Inquiry
— Withdrawal

— Deposit

Class Diagrams (Page 1)
* UML class diagrams allow us to model classes in a system along with their
interrelationships
+ Each class is modeled as a rectangle with three compartments:
—Top contains the class name centered
—The middle contains the class attributes
— The bottom contains the class operations (behaviors)

« Initially the middle and bottom compartments may be left blank since attributes and
operations are "yet to be determined”

Class Diagrams (Page 2)

+ Class diagrams also show the relationship between classes of the system
+ Solid lines connect two classes and represent what is called an association

Navigability
+ Adding association lines to a UML class diagram show which objects need references
to other objects

+ Navigability arrows (=) added to association lines show the direction in which an
association between two classes is traversed

+ Sometimes relationship goes in a single direction and sometimes it is bidirectional

Visibility (Access Modifiers)

+ private—for instance variables so that they cannot be seen output the object;
indicated by minus sign (-) in UML diagram

* public—for methods that are accessed from other classes; indicated by plus sign (+) in
UML diagram

* NOTE: Methods called “utility methods” that only are accessed by and serve methods
of the same class should be private

Identifying Class Attributes (Page 1)
+ Class attributes are implemented as fields (instance variables)

* Attributes may be identified in the requirements document as descriptive words and
phrases

+ For each significant word and phrase, create an attribute and assign it to a class that

Page 6

CST242—The ATM App

may need it

44 Identifying Class Attributes (Page 2)
+ Classes and possible attributes for the ATM:

Class Descriptive words and phrases
ATM user is authenticated

Screen (nhone)

Keypad (none)

Cash Dispenser each day begins with 500 $20 bills
Deposit Slot (none)

Account account number, PIN, balance

Bank Database (none)

Balance Inquiry account number

Withdrawal account number, amount

Deposit account number, amount

46 Identifying Class Operations (Page 1)

Class operations are implemented as methods

An operation is a “service” that an object of the class provides to a client (user) of the

class

Attributes may be identified in the requirements document as descriptive verb and

verb phrases

Then relate these verbs and phrases to classes in the system

47 Identifying Class Operations (Page 2)

Classes and possible operations for the ATM:

Class Descriptive verbs and phrases
ATM executes financial transactions
Screen displays a message to user
Keypad received numeric input from user

Cash Dispenser dispenses cash,
confirms sufficient cash for withdrawal
Deposit Slot receives a deposit envelope
Account receives an account balance,
credits deposit amount to account,
debits withdrawal amount from account

49 Identifying Class Operations (Page 3)

Classes and possible operations for the ATM (con.)
Class Descriptive verbs and phrases
Bank Database authenticates a user,
receives an account balance,
credits deposit amount to account,
debits withdrawal amount from account

Page 7

CST242—The ATM App

51

52

53

57

58

59

Balance Inquiry (none)
Withdrawal (none)
Deposit (none)

Implement the ATM System

1. Convert the classes into code which represent the “skeleton” of the application
2. Modify the code to include inheritance

3. Complete the code for the ATM system

Try It Out
+ Add the “skeleton” classes (header and empty body):
— ATM, BankDatabase, Account, Keypad, Screen, CashDispenser, DepositSlot
* Create class Withdrawal
— Add the class including constructor (with no code as a “stub” placeholder)
— Add instance variable attributes:
« accountNumber, amount
— Add instance variables for associations to ATM objects:
« screen, bankDatabase, keypad, cashdispenser
— Add the execute() method “stub”

Adding Inheritance

* Find commonality among classes

* Create inheritance hierarchy to implement this commonality in a more efficient and
elegant way

* The common elements are placed in a superclass

* The superclass may be abstract and may contain abstract methods
— Abstract element names are designated in italics in the UML class diagram

Try It Out
» Add super abstract class Transaction
— Move instance variable accountNumber and instance variables for associations
screen and bankDatabase from class Withdrawal to Transaction
— Add the constructor “stub”
— Add public abstract void execute();

Try It Out
+ Add the two other “Transaction” subclasses:
class Deposit extends Transaction
class Balancelnquiry extends Transaction
— Add constructor with parameters and call to superclass method super()
— Add execute() method with @Override annotation to both classes

Try It Out

+ Continue sub class Withdrawal
— Add extends Transaction to class signature

Page 8

CST242—The ATM App Page 9

60

61

63

65

66

67

— Complete the constructor with parameters and call to superclass method super()
— Add @Override annotation to execute() method

Complete the App
* Following specifications in the UML diagrams, complete the rest of the application

Class Screen

+ Represents the screen of the ATM as output to the console

+ The three methods in this class print:
System.out.print()—with no carriage return
System.out.printin()—with a carriage return

System.out.printf()—formats type double variables where output format is like
String.format()

Class Keypad

+ Represents the keypad of the ATM by declaring a Scanner object as an instance
variable and instantiating it in the constructor method

+ The two methods in this class get input by calling:
nextint()—inputs an int from the Scanner
nextDouble()—inputs a double from the Scanner

Class ATM
+ Starts ATM running by calling the run() method which loops continually until operator
"breaks” into the system

« This instance variable is initialized to false but modified to true when the user is
authenticated

private boolean userAuthenticated;
« Account number instance variable for the “current user”
private int currentAccountNumber;

Class ATM—Simulated Objects
* There are five instance variables which are references to associated ATM simulated
objects
private final Screen screen;
private final Keypad keypad;
private final CashDispenser cashDispenser;
private final DepositSlot depositSlot;
private final BankDatabase bankDatabase;

Class ATM—Constants
* There are four constants which correspond to the “Main Menu” options
private final static int BALANCE_INQUIRY = 1;
private final static int WITHDRAWAL = 2;
private final static int DEPOSIT = 3;
private final static int EXIT = 4;

CST242—The ATM App

69

70

71

72

73

Class ATM—Constructor
* The no-parameter constructor initializes instance variables to reflect that a user is not
yet logged in

userAuthenticated = false;
currentAccountNumber = 0;

+ ... and instantiates the five ATM simulated objects
screen = new Screen();
keypad = new Keypad();
cashDispenser = new CashDispenser();
depositSlot = new DepositSlot();
bankDatabase = new BankDatabase();

Class ATM—run() Method

* The outer while loop continues indefinitely
while (true)

* The inner while loop authenticates user
while (! userAuthenticated)

* Call to perform the transactions for current user
performTransactions();

* Reset authentication and account number so another user may login
userAuthenticated = false;
currentAccountNumber = 0;

Class ATM—authenticateUser() Method
+ Displays prompts to the Screen and gets user input from the Keypad for account
number and PIN

+ Updates boolean instance variable userAuthenticated from BankDatabase method
authenticateUser()
userAuthenticated = bankDatabase.authenticateUser(accountNumber, pin);
+ Updates accountNumber instance variable or sends error message to Screen based
upon user authentication
if (userAuthenticated)

{..

Class ATM—performTransactions() Method
+ Declares and attempts to instantiate a Transaction object from the constructor of one
of its subclasses, and if successful call its execute() method

+ Calls "helper” method createTransaction() to instantiate object if displayMainMenu()
returns BALANCE_INQUIRY, WITHDRAWAL or DEPOSIT

+ Displays an error message to the Screen if user enters an invalid option, and repeats
loop
» The loop continues for currently logged in user until displayMainMenu() returns EXIT

Class ATM—displayMainMenu() Method

Page 10

CST242—The ATM App Page 11

+ Displays the "Main Menu" to the Screen and gets input from the Keypad as the user
choice
* Returns the user choice as an int

74 Class ATM—createTransaction() Method
+ Declares, instantiates (by calling one of the three subclass constructors) and return’s a
Transaction object
transaction = new Balancelnquiry(accountNumber, screen, bankDatabase);
transaction = new Withdrawal(accountNumber, screen, bankDatabase, keypad,
cashDispenser);
transaction = new Deposit(accountNumber, screen, bankDatabase, keypad,
depositSlot);
* Based upon value of int type parameter which is either BALANCE_INQUIRY,
WITHDRAWAL or DEPOSIT

75 Try It Out
* Start class ATM
— Instantiate ATM object and call run() from main()
— Except for method run(), all other methods are “helper methods” and should be
private
—To complete run(), first complete class Screen
—To start method authenticateUser(), first complete class Keypad
— Complete all of authenticateUser() except call to bankDatabase.authenticateUser()

76 Try It Out
« Start class ATM (con.)
— Create just the “stubs” and complete later:
« performTransactions()
« displayMainMenu()
« createTransaction()

77 Class Account
* Each object represents one bank account
» Account number for the account
private int accountNumber;
PIN number related to account number for the account

private int pin;

+ Funds available for withdrawal
private double availableBalance;

+ Funds available plus pending deposits
private double totalBalance;

78 Class Account—Constructor

+ Initializes the accountNumber, pin, availableBalance and totalBalance from the
parameters

CST242—The ATM App Page 12

80

81

82

83

84

85

87

Class Account—validatePin() Method

+ Determines whether the user input PIN parameter matches the PIN in this account
object
return (this.pin == pin);

Class Account—the get Methods

« Returns the accountNumber, availableBalance and totalBalance instance variables
—The pin number is “secret” and as such never returned

Class Account—credit() Method
+ Credits the account by adding deposit amount parameter to the totalBalance instance
variable
totalBalance += amount;
—The amount is not added to the availableBalance until “... we verify the amount of
any enclosed cash and your checks clear” (simulated)

Class Account—debit() Method

+ Debits the account by subtracting withdrawal amount parameter from the
availableBalance and totalBalance instance variables
availableBalance -= amount;
totalBalance -= amount;

Class BankDatabase

+ Stores and manages an array of Account objects

+ Class BankDatabase is a "driver” for the Account class in that accounts are instantiated
and their public methods called from a BankDatabase object

+ The instance variable is the array of accounts
private Account[] accounts;

Class BankDatabase—Constructor
* Instantiates the array to a specified number of elements
accounts = new Account[3];

* Instantiates the Account elements and assigns values to accountNumber, pin,
availableBalance and totalBalance

accounts[0] = new Account(12345, 54321, 1000.00, 1200.00);

Class BankDatabase—getAccount() Method (Page 1)
* This is a private "helper” method which serves the other methods in this BankDatabase
class:
getAvailableBalance()
getTotalBalance()
credit()
debit()

CST242—The ATM App Page 13

88 Class BankDatabase—getAccount() Method (Page 2)

+ Loops through the account objects in the accounts array
for (Account account : accounts)

* If the account number of one of those account elements matches the accountNumber
parameter ...
if (account.getAccountNumber() == accountNumber)

* ... returns that account
return account;

+ If no match and for each loop completes, returns null
return null;

89 Class BankDatabase—authenticateUser() Method

+ Attempts to instantiate an Account object by passing the accountNumber parameter
to "helper” method getAccount() of this class BankDatabase
Account account = getAccount(accountNumber);

* If the account is instantiated, returns boolean value from the method validatePin() of
class Account
if (account != null)

return account.validatePin(pin);

* If the account fails to be instantiated ...

return false;

90 Class BankDatabase—getAvailableBalance() Method
+ Gets an Account object by passing the accountNumber parameter to "helper” method
getAccount() of this class BankDatabase
getAccount(accountNumber)
* Then returns int from getAvailableBalance() method from the Account class
return getAccount(accountNumber) .getAvailableBalance();

91 Class BankDatabase—getTotalBalance() Method
+ Gets an Account object by passing the accountNumber parameter to "helper” method
getAccount() of this class BankDatabase
getAccount(accountNumber)
» Then returns int from getTotalBalance() method from the Account class
return getAccount(accountNumber) .getTotalBalance();

92 Class BankDatabase—credit() Method
+ Gets an Account object by passing the accountNumber parameter to "helper” method
getAccount() of this class BankDatabase
getAccount(accountNumber)

* Then credits the account by passing the amount parameter to method credit() from
the Account class

getAccount(accountNumber) .credit(amount);

CST242—The ATM App

93

94

95

96

97

98

Class BankDatabase—debit() Method

+ Gets an Account object by passing the accountNumber parameter to “helper” method
getAccount() of this class BankDatabase
getAccount(accountNumber)

* Then debits the account by passing the amount parameter to method debit() from the
Account class

getAccount(accountNumber) .debit(amount);

Class Transaction
* Subclasses of the abstract class Transaction are Balancelnquiry, Withdrawal and
Deposit
* An account number for this transaction
private final int accountNumber;
« An ATM Screen object for output for this transaction
private final Screen screen;

* An ATM BankDatabase object to access information about the Account for this
transaction

private final BankDatabase bankDatabase;

Class Transaction—Constructor

* Initializes the accountNumber, screen and bankDatabase instance variables from the
parameters

* These variables are accessed by the three subclasses through the get methods

* Class Transaction is “immutable” as it has no set methods

Class Transaction—the get Methods
* Method getAccountNumber() is called by the three subclasses to return the
accountNumber for a transaction

+ Method getScreen() is called by subclasses as a "helper” method to instantiate a screen
object for transaction output

* Method getBankDatabase() is called by subclasses as a “helper” method to instantiate
a bankDatabase object for accessing account information for the transaction

Try It Out

+ Complete class Transaction

« Complete the constructor header and call to super for:
class Balancelnquiry
class Withdrawal
class Deposit

Try It Out
» Complete class ATM
— Complete method authenticateUser()
— Complete methods displayMainMenu() and createTransaction() before the method

Page 14

CST242—The ATM App

99

101

102

103

104

105

107

performTransactions()

Class Balancelnquiry

+ Class Balancelnquiry extends Transaction and represents an ATM balance inquiry
transaction

Class Balancelnquiry—Constructor

* Passes the parameters accountNumber, screen and bankDatabase to superclass
constructor and instantiates objects for AccountNumber, Screen and BankDatabase

Class Balancelnquiry—execute() Method (Page 1)

+ Overrides the abstract execute() method of class Transaction and performs the balance
inquiry transaction

+ Instantiates bankDatabase and screen objects by calling superclass Transaction
"helper” methods
BankDatabase bankDatabase = getBankDatabase();
Screen screen = getScreen();

Class Balancelnquiry—execute() Method (Page 2)

* Gets the availableBalance and totalBalance from the BankDatabase object
— Method getAccountNumber() is inherited from superclass Transaction
double availableBalance = bankDatabase.getAvailableBalance(getAccountNumber());
double totalBalance = bankDatabase.getTotalBalance(getAccountNumber());

Class Balancelnquiry—execute() Method (Page 3)
+ Displays the availableBalance and totalBalance to the Screen object

screen.displayDollarAmount(availableBalance);

screen.displayDollarAmount(totalBalance);

Class DepositSlot

+ Class DepositSlot simulates whether or not the envelope is received

* Its single method (there is no constructor) always returns true since this is just a
simulation of a real deposit slot
public boolean isEnvelopeReceived()
{

return true;

}

Class Deposit
* Class Deposit extends Transaction and represents an ATM deposit transaction
+ The instance variable amount is the amount of the deposit
* The associated ATM simulated objects:
— keypad is used to select the amount of withdrawal from the “Withdrawal Menu”

Page 15

CST242—The ATM App Page 16

— depositSlot is used to simulate the slot in the ATM for depositing cash
 The constant corresponds to a value of zero (0) which is the “canceled” option
private static final int CANCELED = 0;

109 Class Deposit—Constructor
* Passes the parameters accountNumber, screen and bankDatabase to superclass
constructor and instantiates objects for AccountNumber, Screen and BankDatabase

* The parameters keypad and depositSlot are assigned to the instance variables to
instantiate the Keypad and DepositSlot objects

110 Class Deposit—execute() (Page 1)
 Overrides the abstract execute() method of class Transaction and performs the deposit
transaction

+ Instantiates bankDatabase and screen objects by calling superclass Transaction
"helper” methods

BankDatabase bankDatabase = getBankDatabase();
Screen screen = getScreen();

+ Calls method promptForDepositAmount() to get the amount of the deposit
amount = promptForDepositAmount();

111 Class Deposit—execute() (Page 2)
* First checks to see if the user selected CANCELED option
if (amount == CANCELED)
* Is so, reports "Canceling...”
* Is not, "receives envelope” to depositSlot
boolean envelopeReceived = depositSlot.isEnvelopeReceived();

112 Class Deposit—execute() (Page 3)
« If envelope is received (which always will be true in this simulation) ...
if (envelopeReceived)
{..
* Finally credits the account into the bankDatabase object
— Method getAccountNumber() is inherited from superclass Transaction
bankDatabase.credit(getAccountNumber(), amount);

113 Class Deposit—promptForDepositAmount()

* Instantiates a Screen object from method getScreen() of the Transaction class to
display the prompt
Screen screen = getScreen();

+ Displays prompt for the deposit amount to the Screen object and gets input from the
Keypad object

* For input values of zero (0) or less, returns CANCELED, e.g. zero (0)
return CANCELED;

* For all positive values, returns the input value
return input;

CST242—The ATM App Page 17

114

115

117

118

119

120

Class CashDispenser

+ Simulates the cash dispenser of the ATM

« Constant stores the initial number of $20 bills that are stored in the cash dispenser
private final static int INITIAL_COUNT = 500;

« Instance variable keeps track of how much cash (how many $20 bills) currently are
available

private int count;

Class CashDispenser—Constructor

« The constructor sets count instance variable (how many $20 bills) to the value of
constant INITIAL_COUNT
count = INITIAL_COUNT;

Class CashDispenser—dispenseCash() Method

* Calculates the number of $20 bills from the amount parameter divided by 20
amount / 20

+ Assign number of bills required to local variable
int billsRequired = amount / 20;

* Subtract billsRequired from the count instance variable
count -= billsRequired;

Class CashDispenser—isSufficientCashAvailable() Method

« Calculates the number of $20 bills from the amount parameter and assigns result to
local variable
int billsRequired = amount / 20;

* “Calculates” a boolean value that indicates whether or not the count of $20 bills is
sufficient
return (count >= billsRequired);

Class Withdrawal (Page 1)

+ Class Balancelnquiry extends Transaction and represents an ATM withdrawal
transaction

* The instance variable amount is the amount of the withdrawal

* The associated ATM simulated objects:
— keypad is used to select the amount of withdrawal from the "Withdrawal Menu”
— cashDispenser is used to simulate the dispensing of cash for the withdrawal

Class Withdrawal (Page 2)
» The constants represent the corresponding options for the “Withdrawal Menu”
private static final int DOLLARS_20 = 1;
private static final int DOLLARS_40 = 2;
private static final int DOLLARS_60 = 3;
private static final int DOLLARS_100 = 4;
private static final int DOLLARS_200 = 5;

CST242—The ATM App

122

123

124

125

126

127

private static final int CANCEL = 6;

Class Withdrawal—Constructor
* Passes the parameters accountNumber, screen and bankDatabase to superclass
constructor and instantiates objects for AccountNumber, Screen and BankDatabase

» The parameters keypad and cashDispenser are assigned to the instance variables to
instantiate the Keypad and CashDispenser objects

Class Withdrawal—execute() (Page 1)

+ Overrides the abstract execute() method of class Transaction and performs the
withdrawal transaction

+ The boolean instance variable transactionComplete controls the loop and remains false
until either cash is dispensed or the user cancels the operation

» The double instance variable availableBalance gets the amount available from the
bankDatabase for this account

Class Withdrawal—execute() (Page 2)

« Instantiates bankDatabase and screen objects by calling superclass Transaction
"helper” methods
BankDatabase bankDatabase = getBankDatabase();
Screen screen = getScreen();

Class Withdrawal—execute() (Page 3)
+ The do while loop continues until true is assigned to the variable completeTransaction
because either:
— An amount to withdraw is selected from menu
— The user selects CANCEL from menu
do
amount = displayMenuOfAmounts();

while (! completeTransaction);
— Method displayMenuOfAmounts() gets the amount of withdrawal from the user

Class Withdrawal—execute() (Page 4)

* First checks to see if the user selected the CANCEL option
if (@amount == CANCEL)

* Is so, reports “Canceling...” and ends the loop
transactionComplete = true;

* Is not, continue by getting the availableBalance for the account from the
bankDatabase

availableBalance = bankDatabase.getAvailableBalance(getAccountNumber());

Class Withdrawal—execute() (Page 5)
* |s there not a sufficient available balance in the account for the withdrawal
if (@amount > availableBalance)

Page 18

CST242—The ATM App

* Is there not sufficient cash in the ATM for the withdrawal
if (! cashDispenser. isSufficientCashAvailable(amount))

* These errors are reported to the user and the loop repeats to display the “Withdrawal
Menu" again

128 Class Withdrawal—execute() (Page 6)
« If all is good, debits the account from the bankDatabase object, removes that amount
of cash from cashDispenser object and stops the loop
— Method getAccountNumber() inherited from superclass Transaction
bankDatabase.debit(getAccountNumber(), amount);
cashDispenser.dispenseCash(amount);
transactionComplete = true;

129 Class Withdrawal—displayMenuOfAmounts() (Page 1)

* Instantiates a Screen object from method getScreen() of the Transaction class to
display the menu
Screen screen = getScreen();

 The int variable userChoice controls the loop and is assigned the value zero (0)
int userChoice = 0;

« An int[] array stores the amounts related to the values in the “Withdrawal Menu”
int[] amounts = {0, 20, 40, 60, 100, 200};

130 Class Withdrawal—displayMenuOfAmounts() (Page 2)
* The variable userChoice controls the loop, the menu is displayed to the Screen object,
and the user’s choice is input from the Keypad object
while (userChoice == 0)
{
screen.displayMessageLine("\nWithdrawal Menu:");
screen.displayMessageLine("1 - $20");

int input = keypad.getint();

131 Class Withdrawal—displayMenuOfAmounts() (Page 3)

+ For all dollar amounts from the “Withdrawal Menu” the value is assign from the int[]
amounts array (which also ends the loop)
userChoice = amounts[input - 1];
—Menu input goes from 1 to 5, array indexes from 0 to 4

« If “"Cancel Transaction” is selected from the “Withdrawal Menu” the loop is terminated
userChoice = CANCEL;

* Forinvalid input values, an error is reported to the user, the value of userChoice
remains zero (0) and the loop repeats

Page 19

