C#: Windows Forms Database Page 1

10

Windows Forms Database
CST242

The MenuStrip Control

* The MenusStrip control is used to create Microsoft Windows ®-style drop-down menu
bars

* Menu titles are displayed at top of the Form on the menu bar

* Menu items “drop down” from the menu bar

Creating Menu Commands (Page 1)

* The MenuStrip is selected from the Menus & Toolbars group in the "Toolbox”
* It appears at the bottom of the work area IDE in the “Component Tray”
* Menu bar itself automatically is placed at top of Form onto the MenuStrip

Creating Menu Commands (Page 2)

* Each ToolStripMenultem (the commands on the menu) is an object with its own
properties including Name and Text

* The Text property of each menu title and menu item is the caption for the menu
element and may be typed directly onto the item

Creating Menu Commands (Page 3)
* The Name property for each ToolStripMenultem is assigned in the “Properties” window,
just the same as any other control
» A Name will be assigned automatically if the Text property is typed into the menu
directly
» Consists of the Text property value followed by “ToolStripMenultem”
* For example if the Text property is "File” the default Name will be
“fileToolStripMenultem”

Creating Menu Commands (Page 4)
» Many of the most common MS Windows® menu commands include a shortcut key
* A character (for example the <Ctrl> key) combined with another character executes
the command directly (or one of the functions keys, e.g. F1)
*» For example, the keystrokes <Ctrl> + P should print the current document; or <Ctrl>
+ S saves the document

* Selected by modifying ShortcutKeys property in the “Properties” window

Assigning Code to Menus (Page 1)
* Each item in a menu is a Visual C# object

* Code is assigned to event handler methods for menu items the same way it is to any
other control/object

* To run the code, select menu item from the menu bar at run-time

Assigning Code to Menus (Page 2)

* To get to a menu item'’s Click event (which is its default event), double-click the item
from the menu during design time

C#: Windows Forms Database Page 2

« Alternately to assign a new function to multiple menu items, in the “Properties”
window select the event and manually type the name for the new shared function

12 The ToolStrip Control (Page 1)
* The ToolStrip control is a container that is used for creating a Microsoft Windows ®-style
toolbar with a collection of button items
* A toolbar is used to execute frequently used commands (which also might be found in
one of the application’s menus)
* Provides one-click functionality

13 The ToolStrip Control (Page 2)
* Found in the Menus & Toolbars group of the “Toolbox”
* It appears at the bottom of the work area IDE in the “Component Tray”

* The buttons automatically are placed onto the ToolStrip usually near the top of the
Form (and often just below the MenuStrip)

14 The ToolStrip Control (Page 3)
* Each item on a ToolStrip is a ToolStripButton which may display an image, text, or
both—images may inserted from:

* A “Local resource” which will need to be installed independently wherever the
application runs

* The "Project resource file” which is a member of the Visual C# project

* Clicking on any item on ToolStrip object triggers an ItemClicked event (for the entire
ToolStrip)

15 Setting ToolStrip Properties
» Some of the properties for the ToolStrip control:
* Items: The collection of ToolStripButtons and other object types on the toolbar
» Size: By default Height is 25 pixels, Width is the width of the Form
* ShowltemToolTips: Set to True or False

16 Adding Items to the ToolStrip
* The "easier” way to add items to a ToolStrip is to click on the ToolStrip object itself
* Click the Add menu item button and select an object “type” from the list
* The object is added as the next item onto the toolbar

* Or the Items property is used to open the “ltems Collection Editor” and to create
individual buttons and set their properties

17 ToolStrip Item Types (Page 1)
* Item type defines behavior of each button:
* Button
* Click once to send a Click event which executes code
* Like clicking a menu item
» ComboBox
* The same functionality as a stand-alone ComboBox (e.g. Add method,

C#: Windows Forms Database Page 3

SelectedIndex property)
* The selected item text appears in the ComboBox Item on the toolbar after it is
selected

18 ToolStrip Item Types (Page 2)
* Item type defines behavior of each button (con.):
* DropDownButton
* When clicked, displays a drop-down menu below it

» DropDownltems property to create menu items in the "ltems Collection Editor" or
enter them manually directly onto the DropDownButton

* Triggers a Clicked event when any sub-item in drop-down list is selected
* Separator
* Vertical line between two items; used for grouping

19 Properties of the Items Collection (Page 1)
* Properties for individual objects on the ToolStrip may be set in the Properties window
or from within the "Items Collection Editor":
* Name: E.g. "toolStripButtonFirst”
* DisplayStyle: None, Text, Image, ImageAndText
* Image: A path/file or reference of an image to be displayed on the button
* Better to add each image as a "Project resource file”

20 Properties of the Items Collection (Page 2)
* Properties for objects on the ToolStrip (con.):
* Text: To be displayed on the object instead of an image, or object may have both an
image and text displayed together
* TextimageRelation: Where the two elements appear in relation to each other—
Overlay, ImageAboveText, TextAbovelmage, ImageBeforeText, TextBeforelmage
* ToolTipText: When the mouse hovers over the object

22 The StatusStrip Control (Page 1)
* The StatusStrip control is a status bar that usually appears at the bottom of the Form

* It contains StatusLabel controls which are regions called panels that may display both
text and images

23 The StatusStrip Control (Page 2)
* The purpose of a StatusStrip is to display application status and operating system
information, e.g.
* Is the Caps Lock on or off?
* System time and/or date
* What is current record number in a database?

24 The StatusStrip Control (Page 3)

* Found in the Menus & Toolbars group of the “Toolbox”
* It appears at the bottom of the work area IDE in the "Component Tray”

C#: Windows Forms Database

25

26

27

28

30

31

* The "panels” that display the “status” information automatically are placed onto the
StatusStrip usually at the bottom of the Form

The StatusStrip Control (Page 4)

* The "easier” way to add to add a StatusLabel is to click on the ToolStrip object itself
* Click the Add menu item button and select an object “type” from the list
* The object is added as the next item onto the status bar

* Or the Items property is used to open the “Items Collection Editor” and to create
individual panels and set their properties

Properties of the Items Collection (Page 1)
* Properties for individual StatusStrip objects may be set in the Properties window or
from within the “Items Collection Editor":
* Name: e.g. "toolStripStatusLabelRecordNumber"”
 AutoSize: True (width set to text size-to-fit) or False; if set to True, manual Width
property has no effect
* BorderSides: Is there a border and on which sides? None, All, Top, Bottom, Left,
Right
Properties of the Items Collection (Page 2)

* Properties for Items on the StatusStrip (con.):
* BorderStyle: If the BorderSides property is set to a non-None value, its border style
may be Raised, Sunken, one of several others, or None

* DisplayStyle: None, Text, Image, ImageAndText
* Spring: True or False; does the panel widen to fill in the remaining space on the
status bar (usually set to true for one panel to fill in remaining space)

Properties of the Items Collection (Page 3)
* Properties for Items on the StatusStrip (con.):

* Text: Displayed in panel but only if DisplayStyle property is set to either Text or
ImageAndText

* TextAlign:
» Width: May be set to a specific size in pixels (only functions if AutoSize property is
set to False)

The Main Method (Page 1)

+ All Windows Forms (and Console) applications include a “code-only” (no visual Form
elements) class file named "Program.cs” within “Solution Explorer”

* This file, created automatically for any new application, contains a method named Main
which is the application’s “starting point”

* The first method that will execute in a C# project (same as Java)
The Main Method (Page 2)

* Example:
namespace WindowsForms1

Page 4

C#: Windows Forms Database Page 5

static class Program

{

static void Main()

{

}

32 The Run Method (Page 1)
* The Run method is a member of the Application class that returns a task which is
queued to execute in the VisualStudio ThreadPool
* That is which task to execute next
* In the method Main, this method is used to tell VisualStudio what is the first thing the

application should do
33 The Run Method (Page 2)

* By default in a Windows Forms application, this task will be to instantiate the first Form
to be viewed in the application

* Developer can change this to another Form
* When the application begins running, this Form will open and be ready for interaction
with the user
34 The Run Method (Page 3)
* Format:
Application.Run(task);
* The task is the next operation that the application will execute

35 The Run Method (Page 4)
* Example:

namespace WindowsForms1

{

static class Program

{

static void Main()

{

Application.Run(new Publisher());

}
36 ADO’s and OLE DB

C#: Windows Forms Database

37

38

39

41

42

» Computer networks need to be able to share incompatible data from differing file
types:

» Data from different software companies such as Microsoft, Oracle, Sybase, Informix,
etc.

» Formatted data (e.g. currency format), graphics, audio, video, etc.

+ Data from a variety of applications, e.g. word processing documents, spreadsheets,
etc.

+ Data stored on intranets and the Internet including XML data sources

Universal Data Access

* The solution to need to share data is called universal data access
* At core to universal access is OLE (object linking and embedding) DB (database) object
interface

* Accesses data stored in different formats ...

* E.g. treats data stored in spreadsheets and databases as if they were in the same
format, even within the same application

C# and Databases (Page 1)
» C# can operate on databases from different software companies:
* Microsoft, Oracle, Sybase, Informix, etc.

* SQL commands are embedded into C# code which enable communication with the
DBMS

+ Additionally the Toolbox controls can be configured to provide database connectivity

C# and Databases (Page 2)
* To use OLE DB objects in a C# application, the "OleDb” namespace must be imported
into the source code
* Example:
using System.Data.OleDb;
* The keyword using implements “importing” in C#

The DataSet Object (Page 1)
+ A dataset is a programmer-defined object that contains one or more tables (or subsets
of tables)
« Stores connection information including in the "App.config” file:
* DBMS type and version, e.g. Access '97, 2000, 2002/2003, or MS SQL Server
* The path and filename of the database
* Links to the tables, fields and stored procedures (queries) to which the object points

The DataSet Object (Page 2)
+ To create and set properties for a DataSet object in "App.config”:
1. From the Project menu select the command Add New Data Source...
2. In the "Data Source Configuration Wizard" click the Database icon and then the
<Next> button
3. At the next screen click the DataSet icon and then the <Next> button

Page 6

C#: Windows Forms Database Page 7

43

44

45

46

47

48

The DataSet Object (Page 3)

+ To create and set properties for a DataSet object in "App.config” (con.):

4. Unless selecting an existing data source, click the <New Connection...> button
which opens the "Add Connection” dialog window

5. Click the <Change...> button to select the provider Microsoft Access Database if
necessary

6. Click the <Browse...> button to select the database

7. Click the <Test Connection> button to verify that the connection to the database
is working (optional)

The DataSet Object (Page 4)
+ To create and set properties for a DataSet object in “App.config” (con.):
8. Click the <OK> button which closes the "Add Connection” window
9. Leave "Yes, save the connection” checked M and then click the <Next> button

10.At next window click checkboxes to select database objects
(Tables/Fields/Queries); select “Tables”

11.Click the <Finish> button to create the dataset which is added to “Solution
Explorer”

Bound Controls

« Controls that can be linked to an ADO DataSet object at run-time
* Displays data stored in current record (only one record may be active at any one
time)
* These controls are considered data-aware
* Bound controls may include the TextBox, CheckBox, ComboBox, DataGridView, etc.

A Comprehensive ADO Application
+ ADO .NET objects that retrieve, insert, update, and delete records may be created using
program code and embedded SQL

* Advantage of using the programmed ADO .NET object over the visual data controls
from the Toolbox: Programmer has complete control of any of a multitude of
operations

* Disadvantage: A lot of programming to learn

The ADO Objects (Page 1)
* When coding, five (5) objects must be instantiated:

1. Create a DataAdaptor object reference (facilitates communication with the data
source—the database)

2. Create a Connection object reference (stores connection information including data
source type, as well as the path and filename of database)

3. Create one or more Command object references (defines SQL SELECT, INSERT,
UPDATE and DELETE commands that return and update records)

The ADO Objects (Page 2)
* When coding, five (5) objects must be instantiated (con.):

C#: Windows Forms Database Page 8

49

50

51

52

53

54

4. Create a DataSet object reference (stores a set of tables returned by a SQL SELECT
command)

5. Create a DataTable object reference (stores one table from the DataSet into RAM
and is manipulated offline)

The OleDbDataAdaptor Class (Page 1)
+» OleDbDataAdaptor is a class used to instantiate a programmer-defined identifier (an
object variable)
* It communicates between the C# application and a database file
* A member of the System.Data.OleDb namespace
using System.Data.OleDb;

The OleDbDataAdaptor Class (Page 2)
* Format:
OleDbDataAdaptor objectName = new OleDbDataAdaptor();
* Example:
OleDbDataAdaptor dataAdaptorPublisher = new OleDbDataAdaptor();
* OleDbDataAdaptor is the type
« Eventually links to OleDbCommand objects (SQL commands are the language used to
communicate with the database)

The OleDbConnection Class (Page 1)
*» The OldeDBConnection class is used to instantiate a programmer-defined object which
defines the connection to a database file

* Stores database connection information including the type of DBMS driver, as well as
path and filename of database file

* Member of System.Data.OleDb namespace
using System.Data.OleDb;

The OleDbConnection Class (Page 2)
* Format:
OleDbConnection objectName = new OleDbConnection();

* Example:
OleDbConnection connectionPublisher = new OleDbConnection();
« Eventually links to OleDbCommand object

Connection Strings on the Internet

« Connection strings for database applications including Windows Forms database apps
can be found at:

Microsoft Access '97/2000

* Microsoft Access ‘97 and 2000 with “.mdb" extension uses the Microsoft Jet OLE DB 4.0
* The connection string for “DataDirectory” functionality in which the path will point to
the “.../bin/debug” folder of the project is:

C#: Windows Forms Database Pageg

55

56

57

58

59

60

61

* Provider=Microsoft.Jet. OLEDB.4.0;

Data Source=|DataDirectory|myDatabase.mdb;
User Id=admin;Password=;

The ConnectionString Property (Page 1)
* For the OleDbConnection object, the ConnectionString property builds a String which
establishes information for the connection including:
* The DBMS type and version, e.g. Access ‘97 or 2000, MS SQL Server, Oracle, etc.
* The path and filename of database

The ConnectionString Property (Page 2)
* The information items are in the form of key=value pairs each separated by a
semicolon ()
* The Provider key specifies DBMS type, e.g.
"Provider=Microsoft.Jet. OLEDB.4.0"

The ConnectionString Property (Page 3)
* The Data Source key specifies path (location) to the database and its filename, e.g.
"Data Source=|DataDirectory|Books.mdb"

* Other keys that are part of the connection string for OleDb 4.0 are User ID and
Password

The ConnectionString Property (Page 4)
* Format:

connectionObject.ConnectionString = "ProviderString;SourceString"
* Example:

connectionPublisher.ConnectionString = "Provider=Microsoft.Jet. OLEDB.4.0;Data
Source=|DataDirectory|Books.mdb; User ID=admin; Password=";

The ConnectionString Property (Page 5)

» Format (easier to use connection string from the “App.config” file):
connectionObject.ConnectionString = " Properties.Settings.Default;ConnectionString"

* Example:

connectionPublisher.ConnectionString = "
Properties.Settings.Default.ConnectionStringBooks *;

The OleDbCommand Class (Page 1)

* The OleDbCommand class is used to instantate a programmer-defined identifier
(object) which stores a SQL command that executes to establish the database
connectivity

» Command to returns records, or inserts, updates or deletes rows
* Member of System.Data.OleDb namespace
using System.Data.OleDb;

The OleDbCommand Class (Page 2)
* Format:

C#: Windows Forms Database Page 10

62

63

64

65

66

67

OleDbCommand objectName = new OleDbCommandy();
* Example:
OleDbCommand commandPublisherSelect = new OleDbCommand();

* Eventually links back to OleDbConnection object and forward to OleDbDataAdapter
object

The CommandText Property
* For the OleDbCommand object, CommandText Property is a String that defines a SQL
SELECT, INSERT, UPDATE, or DELETE command
* Format:
commandObject. CommandText = "SQLCommandString"/StringVariable;
* Example:
commandPublisherSelect. CommandText = "SELECT * FROM Publisher"

The Connection Property (Page 1)

* For the OleDbCommand object, the Connection property stores information about the
DBMS to which the command references

« Effectively creates the link between the Command object and the Connection object

The Connection Property (Page 2)
* Format:
commandObject. Connection = ConnectionObjectName
* Example:
commandPublisherSelect.Connection = connectionPublisher;

The SelectCommand Property (Page 1)

* For the OleDbDataAdaptor object, stores SQL command information to be executed by
the DBMS

« Effectively creates link between DataAdaptor object and the Command object

The SelectCommand Property (Page 2)
* Format:
dataAdaptorObject.SelectCommand = commandObject,
* Example:
dataAdapterPublisher.SelectCommand = commandPublisherSelect;

The DataSet Class (Page 1)
* The DataSet class is used to instantiate a programmer-defined identifier (object) which
stores the collection of tables ...
» May store more than one table returned by the OleDbDataAdaptor object
* The Dataset is stored and manipulated locally “offline” in RAM
* Physical database is updated after processing of the data is completed
» Member of System.Data namespace
using System.Data;
* Already imported in every new Windows Forms application

C#: Windows Forms Database

68

69

70

71

72

73

74

The DataSet Class (Page 2)
* Format:
DataSet dataSetObject = new DataSet();
* Example:
DataSet dataSetPublisher = new DataSet();
* Declared as Private in (Declarations) so object will have module scope ...
* But private from other modules in the application

The Fill Method (Page 1)
» Method Fill is a method of an OleDbDataAdapter object which:
* Opens the connection to the data provider (DBMS)
* Sends the SQL SELECT command as stored in SelectCommand property

« After the data provider executes the command, populates the DataSet with data
from database

The Fill Method (Page 2)
* Format:

dataAdapterObject.Fill(dataSetObject);
* Example:

dataAdapterPublisher.Fill(dataSetPublisher);

The DataTable Class (Page 1)
* The DataTable class is used to instantiate a programmer-defined identifier (object) that
points to a single table from a DataSet
* Member of System.Data namespace
using System.Data;
* Already a Windows Forms application reference

The DataTable Class (Page 2)
* Format:

DataTable dataTableObject = dataSetObject.Tables[index];
* Example:

DataTable dataTablePublisher = dataSetPublisher.Tables[0];

* Reserved word new is not required because this object is instantiated as the result of
the property value from the Tables collection

The Tables Collection (Page 1)

* The Tables collection is a member of DataSet object representing the one or more
tables assigned to it
* A collection is like an array of properties for an individual object
* It is the set of tables that is stored in the DataSet object
* May include more than one table

The Tables Collection (Page 2)

Page1a

C#: Windows Forms Database

75

76

77

78

80

* Format:
dataSetObject.JTables["TableName"/index]
* Example 1:
dataTablePublisher = dataSetPublisher.Tables[0];

* The index "0" is used since it is the first (and in our case the only) table from the
DataSet

The Tables Collection (Page 3)
* Format:
dataSetObject.JTables["TableName"/index]
* Example 2:
dataTablePublisher = dataSetPublisher.Tables["Publisher"];

* Here one table (named "Publisher") from a DataSet collection is assigned to the
DataTable reference

The DataRow Class (Page 1)
* The DataRow class is used to instantiate a programmer-defined identifier (object) which
points to one record (row) from a DataTable
* Member of System.Data namespace
using System.Data;
* Already a Windows Forms application reference

The DataRow Class (Page 2)
* Format:

DataRow dataRowObject = new DataRow();
* Example:

DataRow dataRowPublisher = new DataRow();

The Rows Collection
* Rows is a member of the DataTable object representing the one row returned from it
* Like Items collection in a DropDownlList or ListBox
* Format:
DataTableName.Rows[index]
* Example:
DataRow dataRowPublisher = dataTablePublisher.Rows[index];
* The index represents the row's position within the DataTable

Items

* An Item is one member of a DataRow representing the data from one column (field)
returned from it

* Format:
dataRowObject["ColumnName"/index];

* Examples:
textBoxPublisherCode.Text = dataRowPublisher["PublisherCode"];

Page 12

C#: Windows Forms Database Page 13

textBoxPublisherCode.Text = dataRowPublisher[0];

83 The Count Property
* The Rows.Count Property for the Rows collection of a DataTable object, returns an
integer representing number of rows in the table
* Format:
dataTableObject.Rows.Count
* Example:
toolStripStatusLabel1.Text = dataTablePublisher.Rows.Count;

84 Enums (Page 1)
» An enum type is a set of named constants that provide meaningful names to discrete
values that otherwise are meaningless
 Underlying values are type int unless they are specified otherwise
* Unless specifically assigned, values are assigned to each constant starting at zero (0)

85 Enums (Page 2)
* Format:
enum EnumName
{
CONSTANT_T,
CONSTANT_2,

|3

86 Enums (Page 3)
* Example:

enum EditState

{
NOT_EDITING,
ADDING,
EDITING

Y

* In this example (the numeric values are meaningless)
* NOT_EDITING =0

 ADDING =1
* EDITING =2
87 Enums (Page 4)

* Subsequently to use an enum constant, prefix the constant name with the enum name,
like public constants from a class

* Format:
EnumName. CONSTANT
* Example:

C#: Windows Forms Database Page 14

88

89

90

9

92

if (editState == EditState.NOT_EDITING)

Enums (Page 5)
* Then variables can be declared of the enum type which only can store enum constant
values
* Format:
EnumName enumVariable [= EnumName.CONSTANT |;
* EnumName is the variable “type”
* Example:
EditState editState;
editState = EditState. NOT_EDITING;

Enums (Page 6)
* Using an enum variable and an enum constant in an if statement
* Format:

if (enumVariable == EnumName.CONSTANT)

{..

* Example:
if (editState == EditState.NOT_EDITING)
{..
The State-Machine (Page 1)

* The concept that any running program must be in a known state at any given time
* When in a specific state, it should be possible to go from that state to only another
legal state:
* E.g., if the program is in an edit-state, it only should be possible to move to a cancel-
state or a save-state (not to an add-state)
« Strict enforcement of the state machine will save the user from himself/herself

The State-Machine (Page 2)
* Valid states in a database system (with legal destinations):
» Add-state — Save-state or Cancel-state
* Edit-state — Save-state or Cancel-state
* Save-state — Idle-state
* Cancel-state — Idle-state
* Delete-state — Idle-state
* Find-state — Idle-state
* Move-state — Idle-state

* |dle-state — Add-state or Edit-state or Delete-state or Find-state or Move-state or
Exit-state

Idle-State Environment (Page 1)
* For two or more records, and at the first one

C#: Windows Forms Database

* The Menus:
* File menu enabled
« Edit menu: New, Edit, and Delete enabled; Update and Undo disabled
* Find Published enabled
* The Buttons:
* First and Previous disabled; Next and Last enabled
* The TextBoxes:
* Readonly is true (disabled)

93 Idle-State Environment (Page 2)
* For two or more records, and at the last one

* The Menus:
* File menu enabled
« Edit menu: New, Edit, and Delete enabled; Update and Undo disabled
* Find Published enabled

* The Buttons:
* First and Previous enabled; Next and Last disabled

* The TextBoxes:
* Readonly is true (disabled)

94 Idle-State Environment (Page 3)
* For two or more records, and any other record
* The Menus:
* File menu enabled
« Edit menu: New, Edit, and Delete enabled; Update and Undo disabled
* Find Published enabled
* The Buttons:
* First, Previous, Next and Last enabled
* The TextBoxes:
* Readonly is true (disabled)

95 Add-State and Edit-State Environments
» Add-State and Edit-State are the same

* The Menus:
* File menu disabled
* Edit menu: New, Edit, and Delete disabled; Update and Undo enabled
* Find Published disabled

* The Buttons:
* First, Previous, Next and Last disabled

* The TextBoxes:
* Readonly is false (enabled)

96 The Enabled Property

Page 15

C#: Windows Forms Database Page 16

97

99

100

101

102

* The Enabled property is a boolean property for a control set so that when true the
control is activated and when false it is not

* Format:
controlObject Enabled = true|false;

* Example:
fileToolStripMenultem.Enabled = false;

The ReadOnly Property
* The ReadOnly property is a boolean property for a TextBox or other control set so that
when true the user may not type in it
* Format:
controlObject.ReadOnly = true|false;
* Example:
textBoxPublisherCode.ReadOnly = true;

The ItemClicked Event (Page 1)
* The ItemClicked event “fires” for a control that contains an Item collection when a user
clicks on an item within a control, e.g.:
* An Item in a ListView
* A Menultem in a MenuStrip
* A Button or other Item on a ToolStrip

The ItemClicked Event (Page 2)
* Format for a ToolStrip object:
private void toolStripObject_ltemClicked(object sender, ToolStripltemClickedEventArgs
e)
* Example:

private void toolStripPublisher_ltemClicked(object sender,
ToolStripltemClickedEventArgs e)

The ItemClicked Event (Page 3)
* The ToolStripltemClickedEventArgs variable “e” has a Clickedltem property that gets the
item on a ToolStrip that was clicked
* Format:
e.Clickedltem.Property
* Example:
if (e.Clickedltem.ToolTipText == "First")
{..

The switch Statement (Page 1)
* The switch block is a C# structure that can be used to implement linear nested
functionality (e.g. if ... else if ... else if ...)
* Exactly the same as in Java
* The value of a single variable or expression can be tested for multiple “equal to” values

C#: Windows Forms Database Page 17

103 The switch Statement (Page 2)
* The keyword break terminates execution of the switch structure when a true code block
finishes executing
*» Otherwise program execution will “crash” into subsequent cases

« A final optional default case may be specified and executes if all the previous cases are
false

104 Format of switch Structure
switch (testExpression)
{
case value:
statement(s) to be executed when
this case is true go here;
break;
case value:
statement(s) to be executed when
this case is true go here;
break;
[case ...]

[default:
statement(s) to be executed when
no case is true go here;]

}

105 Example of switch Structure
switch (e.Clickedltem.ToolTipText)
{

case "First":
index = 0;
break;

case "Previous":
index--;
break;

case "Next":
index++;
break;

default:
index = dataTablePublisher.Rows.Count - 1;
break;

}

106 Equivalent of switch

C#: Windows Forms Database

107

111

112

113

if (e.Clickedltem.ToolTipText == "First")
{
index = 0;
}
else if (e.Clickedltem.ToolTipText == "Previous")
{
index--;
}
else if (e.Clickedltem.ToolTipText == "Next")
{
index++;
}
else
{

index = dataTablePublisher.Rows.Count - 1;

}

Testing for More than One “true” case in a switch
« Two or more true cases may tested for as follows:
switch (this.editState)
{
case EditState. ADDING:
case EditState.EDITING:
setReadOnly(false);
break;

}
« Evaluates true if this.editState is equal to either EditState ADDING or
EditState.EDITING

The NewRow Method (Page 1)

* The NewRow method creates new row object “in the format of” the underlying
DataTable

* Not initially added to DataTable, but acts as a buffer (work area) until data is stored into
it

The NewRow Method (Page 2)
* Format:

DataRow dataRowObject = dataTableObject. NewRow();
* Example:

DataRow dataRowPublisher = dataTablePublisher.NewRow();

The Add Method
* The Rows.Add method adds the new DataRow object to the existing DataTable (a new

Page 18

C#: Windows Forms Database Page 19

114

115

116

117

118

row in the table)
* Should be executed only after data is stored into columns (fields)
* Format:
dataTableOject.Rows.Add(newDataRowObject);
* Example:
dataTablePublisher.Rows.Add(dataRowNewPublisher);

The BeginEdit Method
* The BeginEdit method enables editing of columns in a DataRow

» Temporarily suspends RowChanging event for the row being edited
* Row will be updated once at the end when the EndEdit method executes

* Format:
dataTableObject Rows|index].BeginEdit();
* Example:

dataTablePublisher.Rows[index].BeginEdit();

The EndEdit Method
« Terminates editing of the DataRow object
* Fires (calls) the RowChanging event to update the entire record
* Format:
dataTableObject Rows|index].EndEdit();
* Example:
dataTablePublisher.Rows[index].EndEdit();

The CancelEdit Method
+ Cancels editing of DataRow that was initiated by BeginEdit method
* Format:
DataTableName.Rows(index).CancelEdit()
* Example:
dataTablePublisher.Rows(mintindex). CancelEdit()

The GetChanges Method

* The GetChanges method examines an existing DataSet and returns (creates) a pointer
to those records in the DataSet which have changed (any inserts, updates and/or
deletes)

* Format:
DataSetName.GetChanges()
* Example:

DataSet dataSetPublisherUpdate = dataSetPublisher.GetChanges();

The Update Method (Page 1)

* The Update method for the DataAdaptor examines a DataSet (usually new from
previously executed GetChanges method) for inserted, updated or deleted records

* Executes the appropriate SQL statement(s) to modify underlying data source (e.g.

C#: Windows Forms Database Page 20

database)
119 The Update Method (Page 2)
* Format:
DataAdaptorName.Update(newDataSetObject)
* Example:

dataAdapterPublisher.Update(dataSetPublisherUpdate);

120 The AcceptChanges Method (Page 1)

* Method AcceptChanges Commits (finalizes) changes to a DataSet
* Any records in the DataSet that previously had been flagged as having been
changed now are marked unchanged

* Usually called immediately after the execution of method Update has modified the
underlying database table

121 The AcceptChanges Method (Page 2)

* Format:
DataSetName.AcceptChanges();
* Example:

dataSetPublisher.AcceptChanges();
123 The Delete Method

* Removes a DataRow from DataTable in RAM
* The DeleteCommand property of DataAdaptor will finalize the operation in the
database table when its Update method is called
* Format:
DataRowName.Delete();
* Example:
dataRowPublisher.Delete();

124 The MessageBoxButtons Class (Page 1)

» MessageBoxButtons is the third argument of MessageBox.Show
* The YesNo value for this argument displays two buttons, “Yes” and a "No” in the
MessageBox dialog window

125 The MessageBoxButtons Class (Page 2)
* Format:

MessageBox.Show("Text_message", "Title_Bar_Caption", MessageBoxButtons);
* Example:

MessageBox.Show("Really delete title?", "Confirm Deletion",
MessageBoxButtons.YesNo);

» Some other values for MessageBoxButtons are OK (which is the default), OKCancel,
AbortRetrylgnore

126 Other MessageBox.Show Parameters (Page 1)
* The fourth argument for the MessageBox.Show method is MessageBoxlcon which

C#: Windows Forms Database Page 21

controls which icon is displayed in dialog
* Format:
MessageBox.Show("Text_message", "Title_Bar_Caption", MessageBoxButtons,

MessageBoxicon);
* Values for MessageBoxlcon include Exclamation, Information, Question, Stop

127 Other MessageBox.Show Parameters (Page 2)

* The fifth argument for the MessageBox.Show method is MessageBoxDefaultButton

« Controls which button in a MessageBox dialog with more than one button is “pre-
selected” as default

* Format:

MessageBox.Show("Text_message", "Title_Bar_Caption", MessageBoxButtons,
MessageBoxIcon, MessageBoxDefaultButton);
* Available values are Button1 or Button2 or Button3

128 Other MessageBox.Show Parameters (Page 3)
» An example with MessageBoxlcon.Question and MessageBoxDefaultButton.Button2:

MessageBox.Show("Really delete this title", "Confirm Deletion",
MessageBoxButtons.YesNo, MessageBoxlcon.Question,

MessageBoxDefaultButton.Button2);

129 The DialogResult Property
* The DialogResult property most often uses its values to test which button was clicked in
a MessageBox dialog window
* Example:
if (MessageBox.Show("Really delete?", "Confirm Deletion”, MessageBoxButtons.YesNo
) == DialogResult.Yes)
{..

» Some values are Yes, No, OK, and Cancel

131 Parameters (Page 1)
* A parameterized SQL statement in Microsoft Access uses question marks (?) to denote
placeholders for parameter objects
* They are "anonymous” in parameterized SQL statements
* The parameter is an object (like a variable) that can accept different values based upon
the logic of an application

132 Parameters (Page 2)
* When the OleDbDataAdaptor object’s Update command executes, the operations and
values are determined dynamically ...
* Determines if it should run the InsertCommand, the UpdateCommand and/or the
DeleteCommand

» Automatically gets variable values from the changed record(s) and substitutes them
into SQL statements
* Example:

C#: Windows Forms Database Page 22

133

134

135

136

137

138

commandPublisherinsert. CommandText = "INSERT INTO Publisher VALUES (?, ?, ?)";

Declaring a Parameter (Page 1)
* Parameter objects to be used in parameterized SQL statements are declared and
instantiated from the OleDbParameter class
* There should be one parameter object for each parameter in the SQL statement
* Imported from the System.Data.OleDb namespace:
using System.Data.OleDb;

Declaring a Parameter (Page 2)

* Each parameter substitutes for a placeholder (?) in a parameterized SQL statement (like
a variable)

* When the SQL statements are executed, the OleDbDataAdaptor automatically
substitutes current value of the parameter into statement

* Once configured, requires no additional manual coding by the programmer to get
the values

Declaring a Parameter (Page 3)
* Format:

OleDbParameter parameterName = new OleDbParameter("name",
OleDbType.dataType, size, "columnName");

» parameterName is the name of the parameter object (it will be substituted into
parameterized SQL command later by the Parameter. Add method)

Declaring a Parameter (Page 4)
* Format:

OleDbParameter parameterName = new OleDbParameter("name",
OleDbType.dataType, size, "columnName");
» name is the name of the parameter object

* Used to access or modify the Value property of a specific parameter when
creating a parameter value "on the fly"

Declaring a Parameter (Page 5)
* Format:
OleDbParameter parameterName = new OleDbParameter("name", OleDbType.type,
size, "columnName");
* type must be consistent with the data type in physical database table (e.g. MS
Access) although it may be different from the actual C# type

Declaring a Parameter (Page 6)
* Format:
OleDbParameter parameterName = new OleDbParameter("name",
OleDbType.dataType, size, "columnName");
* size is the maximum size of data:
* For a String it should match that in the database table
* For numerics (including dates) and Boolean it should be zero (0) since it will be

C#: Windows Forms Database Page 23

139

140

141

142

143

144

inferred from its OleDbType

Declaring a Parameter (Page 7)
* Format:
OleDbParameter parameterName = new OleDbParameter("name",
OleDbType.dataType, size, "columnName");
* columnName is the name of the column in the underlying database table

Declaring a Parameter (Page 8)
* Format:

OleDbParameter parameterName = new OleDbParameter("name",
OleDbType.dataType, size, "columnName");

* Example:
OleDbParameter parameterUpdateName = new OleDbParameter("Name",
OleDbType.VarChar, 20, "Name");

The Add Method for Parameters
* The Parameters.Add method adds a parameter to Parameters collection of the
OleDbCommand object
* Must be inserted into the SQL command in the same order as listed in the statement
* Format:
commandObject Parameters.Add(parameterName);
* Example:
commandPublisherlnsert.Parameters.Add(parameterUpdateName);

The InsertCommand Property (Page 1)

* In addition to the SelectCommand property, DataAdaptor objects additionally may
store commands to insert, update and delete rows

* The InsertCommand property stores a SQL INSERT command into a DataAdapter
object

The InsertCommand Property (Page 2)

* Format:
dataAdaptorName InsertCommand = commandObjectName;

* Example:
commandPublisherlnsert.Connection = connectionPublisher;
dataAdapterPublisher.InsertCommand = commandPublisherlnsert;

The UpdateCommand Property
* The UpdateCommand property stores a SQL UPDATE command into a DataAdaptor
object
* Format:
dataAdaptorName.UpdateCommand = commandObjectName;
* Example:
commandPublisherUpdate.Connection = connectionPublisher;

C#: Windows Forms Database Page 24

145

146

147

148

149

150

dataAdapterPublisher.UpdateCommand = commandPublisherUpdate;

The DeleteCommand Property
* The DeleteCommand property stores a SQL DELETE command into a DataAdapter
object
* Format:
dataAdaptorName.DeleteCommand = commandObjectName;

* Example:
commandPublisherDelete.Connection = connectionPublisher;
dataAdapterPublisher.DeleteCommand = commandPublisherDelete;

Review: Six Steps to Implement a Parameterized Command Object (Page 1)
1. Instantiate the OleDbCommand object
2. Assign Connection object to the Command object's Connection Property

3. Assign a “parameterized” SQL command to the CommandText to property of the
Command object

Review: Six Steps to Implement a Parameterized Command Object (Page 2)
4. Instantiate OleDbParameter objects
5. Add Parameter objects to SQL statement in order

6. Assign the Command object to the DataAdaptor object's appropriate command
property (SelectCommand, InsertCommand, UpdateCommand and DeleteCommand)

Defining the PrimaryKey Property (Page 1)
* A PrimaryKey must be declared and instantiated before a call to the Find method can
execute to return a Row in a DataTable
» Method Find searches the PrimaryKey object
* A consists of an array of one or more DataColumn objects which is a comma delimited
list
* Allows for concatenated primary keys

Defining the PrimaryKey Property (Page 2)
* Format to declare a DataColumn array (1 column):

DataColumn([] dataColumnArrayName = { dataTableName.Columns[index] };
* Format to declare a DataColumn array (more than 1 column):

DataColumn([] dataColumnArrayName = { dataTableName.Columns{firstindex],
dataTableName.Columns[secondindex], ... };

Defining the PrimaryKey Property (Page 3)
* Example of DataColumn declarations (1 column):
DataColumn[] dataColumnPublisherCode = { dataTablePublisher.Columns]
"PublisherCode"] };
* Example of DataColumn declarations (2 columns):
DataColumn[] dataColumnBookAuthor = { dataTableBookAuthor.Columns|
"BookCode"], dataTableBookAuthor.Columns["AuthorlD" 1 };

C#: Windows Forms Database Page 25

152

153

155

156

157

Defining the PrimaryKey Property (Page 4)
« After DataColumn array object is created, it is assigned to the PrimaryKey property of
the DataTable
* Format:
dataTableName.PrimaryKey = dataColumnArrayName;
* Example:
DataColumn([] dataColumnPublisherCode = {
dataTablePublisher.Columns["PublisherCode"] };

dataTablePublisher.PrimaryKey = dataColumnPublisherCode;

The Find Method
* The Find method finds and returns a DataRow from a DataTable with a matching
primary key
* Format:
dataTableObject.Rows.Find(criteria)
* The criteria should match a primary key value from the table (defined in the
PrimaryKey property)
* Example:
DataRow dataRowPublisher = dataTablePublisher.Rows.Find(publisherCode);

The ShowDialog Method (Page 1)
* The ShowDialog method displays a Windows Forms object from the “Solution Explorer”
as a "modal” dialog box
* "Modal” disables the main or parent window but keeps it visible
* Requires user to close modal window before returning to parent or activating
another window from it
* C# also has a Show method which is not modal so users can go back and forth
between the two windows

The ShowDialog Method (Page 2)
* Format:
formObject. ShowDialog();
* Example:
FindPublisherByCode findPublisherByCode = new FindPublisherByCode();
findPublisherByCode.ShowDialog();
* Object must be instantiated from the Form before ShowDialog is called
* Once Form is instantiated, its methods can be call even before it displays

The Hide Method
* The Hide method makes a Form object no longer visible and gives control back to the
Form that called it ...
* Visible property also may hide Form but it keeps control of the application

* Allows Form's resources (including its properties) to remain in RAM and available to
other modules

C#: Windows Forms Database Page 26

* Examples:
this.Hide();
Hide();

158 The Dispose Method
* The Dispose method closes objects and releases unmanaged resources used by the
application
« Since it improves performance and optimizes memory, it is a better option than Close
* Format:
formName . Dispose();
* Example:
findPublisherByName.Dispose();

159 The IndexOf Method
* The Rows.IndexOf method of a data table returns the “index” number of its data row
argument
* Format:
dataTableObject Rows.IndexOf(dataRowObject)
* Example:
index = dataTablePublisher.Rows.IndexOf(dataRowFindByCode);

161 The foreach Loop (Page 1)
* A foreach loop provides an easy way to iterate over arrays or other collections without
an index

* Format in C#:
foreach (type variable in collection)
{..
* Format in Java:
for (type variable : collection)
{..

* Variable type must be the same type as the collection

162 The foreach Loop (Page 2)
* Example in C#:
foreach (DataRow dataRowFind in dataTableFind.Rows)
{
listBoxFind.ltems.Add(dataRowFind);
}

163 The FormClosing Event (Page 1)
* The Form.FormClosing event occurs as a Form is closing but before it actually is closed

* When a Form is closed, all resources within the object are released and the Form is
disposed

C#: Windows Forms Database

164

165

166

168

169

* The series of events that leads to the Form being closed can be stopped and the Form
remain open by assigning:
e.Cancel = true;

The FormClosing Event (Page 2)
* Example:
private void Form_FormClosing(object sender, FormClosingEventArgs e)
{
if (editState == EditState. ADDING || editState == EditState.EDITING)
{

e.Cancel = true;

}

The Cancel Property (Page 1)

* The e.Cancel property of the FormClosingEventArgs parameter (the second parameter)
is a property used in a FormClosing event

« If assigned the value true, the Form remains open

* Default value is false, so if no value assigned (or false is assigned), Form closes, all
resources are released and the Form disposed

The Cancel Property (Page 2)
* Format:
e.Cancel = truelfalse;
* Default is false
* Example:
if (editState == EditState.ADDING || editState == EditState.EDITING)
{
e.Cancel = true;

}

« If the condition is false, e.Cancel remains false

The DataGridView Control
* The DataGridView control displays contents of DataTable object

+ Data is presented in tabular format (in rows and columns) similar to a MS Access
Datasheet view

* Column names are displayed as headers in the first row

Selecting the Data Source

* In "Design” view the DataGridView (once it is selected) has a small “arrow” icon in its
upper-right corner called a “smart tag”

* To select a table for display in the grid:
1. Click the smart tag to open the "DataGridView Tasks” dialog window

2. Select the option “Choose Data Source” and find the DataSet that was configured
when creating the database connection string

Page 27

C#: Windows Forms Database

170

171

172

3. "Drill down” to find the table to be displayed in the DataGridView and select it

Properties for DataGridView
* Dock—if set to the value Fill, the control fills its container (most probably the Form)

+ EditMode—if set to EditProgrammatically, values displayed in the grid may not be
updated using keyboard input

The Value Property for Parameter Objects (Page 1)
» Manually stores new current value for a parameter within parameterized SQL
statements
* Format:
CommandObject. Parameters("Name"/Index).Value = "String"/Value;
* Example:
pcmdDetails.Parameters("PublisherCode").Value = pstrPublisherCode;

The Value Property for Parameter Objects (Page 2)
* So if current value of String variable "pstrPublisherCode" is “BF" ...
* And the parameterized SQL statement reads:
commandDetails.CommandText = "SELECT * FROM Publisher WHERE PublisherCode =
o
* The actual statement that will execute is:
commandDetails.CommandText = "SELECT * FROM Publisher WHERE PublisherCode =
‘BE™

Page 28

