CST242—Windows Forms in C# Page1

1 Windows Formsin C#
CST242

2 Visual C# Windows Forms Applications
* A user interface that is designed for running Windows-based "Desktop” applications
* Not on the Internet, not in a browser window
* A window with a Title bar, border, minimum and maximum buttons, and close button

* The Form becomes a running “Windows" dialog with which a user may interact, and
which can be moved or resized

4 Controls
* A new "Windows Forms Application” starts with a single Form module file and the IDE
presents a “Toolbox" with basic visual objects
* These are controls that are drawn (dragged and dropped) onto the Form
* The controls include:

* Button, CheckBox, ComboBox, Label, ListBox, MenuStrip and Menultems,
RadioButton, StatusStrip, TextBox, ToolStrip, etc.

5 Starting a New Windows Forms Application (Page 1)

* To create a new "Windows Forms” application when launching Visual Studio select
“Create a new project”

6 Starting a New Windows Forms Application (Page 2)
* If already in Visual Studio:
1. Click the File command on the menu bar
2. Click New from the “File” drop-down menu
3. Click Project... from the “New” submenu

7 Starting a New Windows Forms Application (Page 3)
* Alternately:
1. Click the <New Project> button (if it exists) on the “Standard” toolbar
2. Click New Project... from the “New Project” drop-down menu

8 Starting a New Windows Forms Application (Page 4)
* In the “Create a new project” dialog window:
. Select "C#" as the language
. Select "Windows" as the operating system

. Select "Windows Forms App ((NET Framework)” as the application type

1
2
3. Select "Desktop” as the environment
4
5. Click the <Next> button

9 Starting a New Windows Forms Application (Page 5)
* In the “Configure your new project” dialog window:

1. Type the project "Project name” and select its “Location” (drive and folder where it
will be saved)

CST242—Windows Forms in C#

10

11

12

13

14

15

16

* Leave “Solution name” the same as the “Project name”
2. Leave "Place solution and project in the same directory” checkbox unchecked
3. Click the <Next> button

Starting a New Windows Forms Application (Page 6)
* In the “"Additional information” dialog window:
1. Leave ".NET 6.0 (Long-term support) selected and click <Create> button

The Label Control (Page 1)

* The Label control positions unattached text anywhere on the form

* Often placed near TextBoxes (or other controls) which do not have labels of their own
* The caption may be modified during design-time by changing the Text property

* User is cannot type into a Label during run-time (unlike a TextBox)

The Label Control (Page 2)
* The AutoSize property for a Label determines if object increases or decreases in size to fit
the amount of Text entered
* Values:
* True—AutoSize is “on” (default for a Label)
* False—AutoSize is “off”

* A Label with no Text and its AutoSize property set to True can be hard to find on the
Form

Properties (Page 1)

* Properties for many items (including controls on the Form) are updated within the
"Properties” window

* Click on an item (e.g. a Label) to view its properties

Properties (Page 2)
* The Text property for a Label control modifies the text displayed for that item
* Type a new value for property of a Label and text for the control is updated
* Many other control properties exist including:
* Size (Width and Height) of an object
* ForeColor (text color) and BackColor
+ (DataBindings) to "bind” a control to data from a database

The Text Property (Page 1)

* Determines what text is displayed in (or on or beside) an object, e.g. a Label or a TextBox
* Might be modified in “Properties” window, by the user at run-time, or in a code
statement
* The Text property is type String
* Numeric values assigned to the Text property of an object during run-time must be
converted to String

The Text Property (Page 2)
* Run-time code format:

Page 2

CST242—Windows Forms in C# Page 3

17

18

19

20

21

object.Text = value/variable/formula;
* Example:
label1.Text = "My first C# Windows program”;

The TextBox Control (Page 1)

* The TextBox control allows users to input text directly into the Windows Forms
application

* Any characters can be entered, but user can be forced to entered numeric character only

* Derived from base class TextBoxBase which provides functionality including selecting
text, cutting and pasting, etc.

The TextBox Control (Page 2)
* The Text property determines what text is displayed and can be modified during:
* Design-time
* Changing the value in the Properties window
* Run-time
* Values typed into the TextBox by a user
* An assignment statement, e.g.
textBoxKilometers.Text = (miles * 1.614).ToString();

The TextBox Control (Page 3)
* Other properties:
* MaxLength: Maximum number of characters that may entered into TextBox
» Multiline: If set to True, the Height of TextBox is increased and more than one line of
text can be entered
* ReadOnly: If set to True, the user may not key new values into the TextBox; at run-
time code statements may assign new values to control

The TextBox Control (Page 4)
* Other properties (con.):
* ScrollBars: For multi-line TextBoxes—None, Vertical, Horizontal (only if the WordWrap
property is set to False) or Both
* Text.Length—returns number of characters currently in the TextBox (including spaces)
* WordWrap: For multi-line TextBoxes set to either True or False

The TextBox Control (Page 5)
* Methods:
* Clear: erases the content of a TextBox
* Format:
textBoxName.Clear();
* Focus: places the insertion point into the TextBox so that it has the focus

» Most controls can receive the focus
* Format:
textBoxName.Focus();

CST242—Windows Forms in C# Page 4

22

24

25

26

27

28

30

The TextBox Control (Page 6)
* Events:
* TextChanged: the TextBox's default event which fires every time one (or more)
characters is typed or erased
* KeyPress—fires each time keystroke is typed
» KeyDown and KeyUp—fires when the either user presses or releases a key
« Validating and Validated—fires when control is loosing focus (only if the
CausesValidation property is set to True)

The RadioButton Control (Page 1)
* The RadioButton is an option control that can be turned on and off
* The Checked property is Boolean and represents the its value
* True (it is on)
« False (it is off)
» Text property is a label to the right of the RadioButton

The RadioButton Control (Page 2)

* Clicking on one RadioButton turns off any other that was on (mutually exclusive)
« Cannot click RadioButton once to turn it “on” and then again to turn it “off"

* By default only one RadioButton within a container can be turned on at a time ...
* A GroupBox control is a standard container for grouping of RadioButtons

The RadioButton Control (Page 3)
* Run-time format:

radioButtonName.Checked [= True/False]
» Examples:

if (radioButtonMale.Checked)

if (radioButtonMale.Checked = True)

The RadioButton Control (Page 4)
* CheckedChanged is the default event

* It “fires” when the Checked property for a radio button changes (whether it is clicked
or not) from True to False, or vice versa

The GroupBox Control

* The GroupBox is an object in the Container group of the “Toolbox” that provides for the
grouping of controls

* Provides both visual and functional grouping

* When GroupBox is moved, all controls inside it move along with it

* The Text property represents text label on its upper-left border

The CheckBox Control (Page 1)

* The CheckBox control lets the user display a check mark & in the box when selected
(clicked)

* The Checked property is Boolean and represents CheckBox's value

CST242—Windows Forms in C# Page s

31

32

33

35

36

37

* True—it is “on”
* False—it is "off"
* Text property is a label to the right of the CheckBox

The CheckBox Control (Page 2)

» CheckBox and RadioButton differences:

* CheckBox can be clicked once and it is turned “on”; when clicked again it is turned
Ilof "

* More than one CheckBox may be “on” at one time within same container

The CheckBox Control (Page 3)
* Run-time format:

checkBoxName.Checked [= True/False]
* Examples:

if (checkBoxNonSmoker.Checked)

if (checkBoxNonSmoker.Checked = True)

The CheckBox Control (Page 4)

* CheckedChanged is the default event
« It “fires” when the Checked property for a check box changes (whether it is clicked or
not) from True to False, or vice versa

The ComboBox Control (Page 1)

» The ComboBox is an input object with a list of Items (a collection) from which a user may
select one or more

* It displays as a single text line and then when selected drops down to display the items
(e.g. a "drop-down list")

* A scroll bar automatically is enabled if there are more items than will fit when the list
drops down

The ComboBox Control (Page 2)
* Properties:
* Items: A reference to the “ltems” collection (the list of items displayed in the box) ...
» Clicking ellipse [...] on the property line opens the “String Collection Editor” in
which the item lines may be typed
* Items also may be inserted using Add method (will see this later with the ListBox
control)

The ComboBox Control (Page 3)
* Properties (con.):
* SelectedIindex: Returns the index, starting at zero (0), of the item currently selected by
the user; if no item is selected returns -1
* Selectedltem: Returns of the currently item as an object; use the ToString method to
convert that object to Text value, e.g.
comboBoxObject. Selectedltem.ToString()

CST242—Windows Forms in C# Page 6

39 The ListBox Control (Page 1)
* The ListBox is an input object with a list of Items (a collection) from which a user may
select one or more
» ListBox items displayed on lines in a region of a specific fixed size

* A scroll bar automatically is enabled if there are more items than will fit inside the
control

40 The ListBox Control (Page 2)
* Properties:

* Dock: Locks a control (such as a ListBox) to one or more of the edges of the Form
window

* The drop-down editor is displayed as a series of graphical boxes representing the
edges and the center of the form

* If the form is resized, the control automatically resizes to fit the boundaries of the
docked edge

* Values are Top, Bottom, Left, Right, Fill (fill entire Form) and None

41 The ListBox Control (Page 3)
* Properties:
* Items: A reference to the Items collection (the list of items displayed in the box) ...

* Clicking the ellipse [...] on the property line opens the “String Collection Editor” in
which the item lines may be typed

* Items also may be inserted using Add method (next slide)

42 The ListBox Control (Page 4)
* Methods:
* [tems.Add: Inserts an Item (a line of text) into the list
* Format:
listBoxName.ltems.Add(text_to_insert);
* Example:

listBoxQuote.ltems.Add(TextBoxName.Text);

43 The ListBox Control (Page 5)
* Methods (con.):
* ltems.Clear: Deletes all items from the list
* Format:
listBoxName.ltems.Clear();
* Example:
listBoxQuote.ltems.Clear();

45 The Button Control

* The Button is an event-oriented control clicked by user as needed to execute code
operations

* Click is default event for a Button but it also can be programmed to respond to other

CST242—Windows Forms in C#

46

48

50

51

52

53

events:
* E.g. DoubleClick, MouseDown, MouseUp, MouseHover ...
* Determines what the user has done with the mouse and/or keyboard
* User decides when the event is executed
* Text property for Button control sets text displayed on the control

Event-Driven Programming

* The process whereby an application responds to user actions is called event handling

* Double-click on a Button to create an event handler method that responds to its Click
event

* Example method header:
private void buttonGetQuote_Click(object sender, EventArgs e)

* Place all statements to be executed for the object and its event inside the {braces} of
this method

Solution Explorer
* The "Solution Explorer” window located is in the upper-right corner of the IDE and is like
“home” for Visual Studio developers
* In a tree view layout, it lists:
* All projects
* Filenames: source code, images, databases, etc.
+ Other resources and items that are part of the Visual Studio “solution”

* The window is quite sophisticated and it is likely that developers will not use all the
power of the tool

The “.Designer.cs” File (Page 1)
* Drawing the Form at run-time, like all Visual C# operations, requires coded instructions

* This code resides in a file associated with the ".cs” file with the extension “.Designer.cs”
which is generated automatically by creating the Form

The “.Designer.cs” File (Page 2)
» To find this file, in “Solution Explorer”:
« "Drill down" to the files associated with the Form by clicking the box with the arrow
symbol (>>) that precedes the Form'’s filename
* Double-click on “.Designer.cs” filename to open it in Source Code Editor

The “.Designer.cs” File (Page 3)
* The "Windows Form Designer generated code” is initially hidden within the editor

* Click the box with plus (+) that is in front of the hidden code placeholder to expand
the region that contains this code

* Click the same box, now with a minus (-), to hide the code again

Form Properties (Page 1)
* FormBorderStyle:
* None: No border so it is not sizeable; no Title bar so it is not moveable

Page 7

CST242—Windows Forms in C# Page 8

54

55

56

57

58

60

* Fixed Single or Fixed3D: Only may be resized using Maximize and Minimize buttons
on Control box at right end of Title bar (the MaximizeBox and MinimizeBox properties
must be set to True)

« Sizeable (default): May be resized by dragging mouse on border

Form Properties (Page 2)

* FormBorderStyle (con.):
* FixedToolWindow: Tool windows have a smaller text font size on title bar; not
sizeable; has no Minimize nor Maximize buttons
* SizeableToolWindow: Same as FixedToolWindow but resizeable

Form Properties (Page 3)
* ControlBox—on the right of "Title Bar”
* It always contains a Close button; it also may display Maximize and Minimize buttons
* Values are True (it is visible) or False (not visible)
» MaximizeBox and MinimizeBox properties must be set to True for those buttons to be
visible
Form Properties (Page 4)
» StartPosition—location displayed when the Form initially opens:
» Manual: Determined by values of the Location property settings
» CenterOwner: Center in parent Form
* CenterScreen: On entire screen

» WindowsDefaultLocation (default): Operating system determines best location based
on the Win32 value known as CW_USEDEFAULT from the MS Windows “Registry”

Form Properties (Page 5)

* Location—window’s absolute position on the screen (monitor)
* Two sub-properties—X (Left) and Y (Top)
* Only renders if the StartPosition property is set to Manual

» Size—of the form
* Two sub-properties--Width and Height

* Text—text displayed on Form’s “Title Bar”

Form Properties (Page 6)
» WindowState—its size when it first opens
» Normal (default): Same size as designed (based upon the settings for the Size
property)
* Maximized: Full screen
* Minimized: As an icon on the taskbar

Events and Event Handlers

* For almost every object on a Form, the Microsoft Windows® operating system can
respond to many separate mouse and keyboard actions

» Some Visual C# Events are Click, MouseDown, MouseMove, MouseOver, KeyPress,

CST242—Windows Forms in C#

61

62

63

64

65

67

Validating, Validated, etc. (there are dozens)

Syntax of Event Handler Header (Page 1)
* Format:
private void methodName(object sender, EventClassType e)

* The methodName by default consists of the concatenation of the object name and
event type

Syntax of Event Handler Header (Page 2)
* Format (con):
private void methodName(object sender, EventClassType €)
* Control procedures have two parameters:
* sender—a reference which identifies the object (control) which initiated the call to
the method
» e—object variable by which all arguments for an event are passed to the called
method; the EventClassType varies based upon type of event that executed

Syntax of Event Handler Header (Page 3)
* Format:
private void methodName(object sender, EventClassType e)
* Examples:
private void Form1_Load(object sender, EventArgs e)
private void buttonGetQuote_Click(object sender, EventArgs e)

Form Events

* The Load event is the default event for a Form
* Once the Form is loaded into memory but before it becomes visible
* Double-click on any blank area of the Form to create its Load event handler method

* The Form also responds to events common to other controls such as Click and
DoubleClick

The MessageBox.Show Method
* Displays a message in a separate dialog window
» Click the <OK> button to close the window
* Format:
MessageBox.Show("Display String", "Title Bar String");
* Example:

MessageBox.Show("My very first C# Windows program”, "Let's Go");

C# Comment Style (Page 1)
» Comments having a special form that are used to direct third-party documentation
generators to produce XML from those comments and the source code
* This documentation is formatted and designed to be readable in a browser

* All comments must immediately precede a user-defined type, e.g. a class, a method, a
field, an event, a property, etc.

Page g

CST242—Windows Forms in C#

68

69

70

71

72

C# Comment Style (Page 2)
* C# specific comments are in one of two formats:
* Single-line comments start with three slashes (///) :
/// comment
* Delimited (multi-line) comments start with a slash and two stars (/**) and end with a
star and slash (*/):
e
* comment
* (etc.)
*/
C# Comment Style (Page 3)
* There are a set of commonly used (recommended) tags that are built into C# including:
<summary>
<param>
<returns>
<exception>
* The documentation generators can accept and process any tag that follows valid XML
rules
* However other programmer-defined tags are possible

C# Comment Style (Page 4)
* The <summary> tag can be used to describe the type (class, method, etc.) itself
* Example:

/**

* <summary>
* Calculates an insurance quote from the ‘Name' and
*'Age’ TextBoxes, 'Female' and 'Male' RadioButtons,
* 'NonSmoker' CheckBox and '‘Region’' ComboBox
* </summary>
*/
C# Comment Style (Page 5)
* The <param> tag is used to describe a parameter for a method
* It should include a name attribute to “"name” the parameter and a description inside the
tags
* Example:
/o
*
* <param name="age">The age of the person for the quote</param>
*/
C# Comment Style (Page 6)

Page 10

CST242—Windows Forms in C#

73

75

76

78

* The <returns> tag is used to describe the return value of a method
* Example:
o
*
* <returns>The portion of the insurance quote based on age</returns>
*/
C# Comment Style (Page 7)
* The <exception> tag provides a way to document the exceptions a method can throw
* It should include a cref attribute to “name” the Exception type and a description inside
the tags
* Example:
o
*
* <exception cref="ArgumentException">If age parameter is negative </exception>
*/
Declaring Constants
* A constant is an identifier assigned a value that cannot be changed
* Keyword const is used to declare the constant
* Format:
const type CONSTANT_NAME = value;
* The C# standard naming convention is the same as Java, all uppercase letters and
underscores
* Example:
const int BASE_RATE = 250;

The Convert Class
* The static methods of the Convert class are designed to convert data of one type to
another
* There are several of these methods
* Format:
Convert.ToChangeType(value)
* value can be almost any type
* ChangeType is type being converted to (the return type)
* Examples:
int age = Convert.ToInt32(TextBoxAge.Text);

“Windows Forms” File Structure
* Three levels of files:
* Solution file (.sIn)

* A single solution can consist of several projects including Visual C#, Visual Basic,
Visual C++, etc.

« C# project files (.csproj):

Page1a

CST242—Windows Forms in C#

80

81

82

* Information about each module (including filename and relative locations/path)
that make up each project
* Module files (e.g. the code and the Form) (.cs & .Designer.cs):
* Information about the modules in the project

The Solution (.sIn) File
e Information in the Solution file includes:

+ References to the path and filename of the specific “projects” that make up the
solution
* Details regarding which configuration files that are used to compile the entire
application
* A new “Solution” is created whenever a new “Project” is started

» Multiple projects of different types can exist within the solution, e.g. Visual C#, Visual
Basic, Visual C++, etc.

The Project (.csproj) Files (Page 1)
* Each Project file within the solution contains:
» Which type of project this is, e.g.:
* Windows Forms application, Console application, Web Form application
* References to path and filename of each module that make up project:
* Form files, code files, and other modules
« Lists configuration files unique to the compilation of each project
* References to the project’s namespaces and assemblies

The Project (.csproj) Files (Page 2)
» Some of the several types of C# projects:
» Windows Forms Application:
* Project that executes inside a Microsoft Windows® Form on the desktop
* Console Application
* Project that runs in a command (console/terminal) window
* ASPNET Web Form Application (Active Server Pages)

* Project that runs in a web browser and often interacts with a database to provide
dynamic web content

Page 12

	Slide 1: Windows Forms in C#
	Slide 2: Visual C# Windows Forms Applications
	Slide 4: Controls
	Slide 5: Starting a New Windows Forms Application (Page 1)
	Slide 6: Starting a New Windows Forms Application (Page 2)
	Slide 7: Starting a New Windows Forms Application (Page 3)
	Slide 8: Starting a New Windows Forms Application (Page 4)
	Slide 9: Starting a New Windows Forms Application (Page 5)
	Slide 10: Starting a New Windows Forms Application (Page 6)
	Slide 11: The Label Control (Page 1)
	Slide 12: The Label Control (Page 2)
	Slide 13: Properties (Page 1)
	Slide 14: Properties (Page 2)
	Slide 15: The Text Property (Page 1)
	Slide 16: The Text Property (Page 2)
	Slide 17: The TextBox Control (Page 1)
	Slide 18: The TextBox Control (Page 2)
	Slide 19: The TextBox Control (Page 3)
	Slide 20: The TextBox Control (Page 4)
	Slide 21: The TextBox Control (Page 5)
	Slide 22: The TextBox Control (Page 6)
	Slide 24: The RadioButton Control (Page 1)
	Slide 25: The RadioButton Control (Page 2)
	Slide 26: The RadioButton Control (Page 3)
	Slide 27: The RadioButton Control (Page 4)
	Slide 28: The GroupBox Control
	Slide 30: The CheckBox Control (Page 1)
	Slide 31: The CheckBox Control (Page 2)
	Slide 32: The CheckBox Control (Page 3)
	Slide 33: The CheckBox Control (Page 4)
	Slide 35: The ComboBox Control (Page 1)
	Slide 36: The ComboBox Control (Page 2)
	Slide 37: The ComboBox Control (Page 3)
	Slide 39: The ListBox Control (Page 1)
	Slide 40: The ListBox Control (Page 2)
	Slide 41: The ListBox Control (Page 3)
	Slide 42: The ListBox Control (Page 4)
	Slide 43: The ListBox Control (Page 5)
	Slide 45: The Button Control
	Slide 46: Event-Driven Programming
	Slide 48: Solution Explorer
	Slide 50: The “.Designer.cs” File (Page 1)
	Slide 51: The “.Designer.cs” File (Page 2)
	Slide 52: The “.Designer.cs” File (Page 3)
	Slide 53: Form Properties (Page 1)
	Slide 54: Form Properties (Page 2)
	Slide 55: Form Properties (Page 3)
	Slide 56: Form Properties (Page 4)
	Slide 57: Form Properties (Page 5)
	Slide 58: Form Properties (Page 6)
	Slide 60: Events and Event Handlers
	Slide 61: Syntax of Event Handler Header (Page 1)
	Slide 62: Syntax of Event Handler Header (Page 2)
	Slide 63: Syntax of Event Handler Header (Page 3)
	Slide 64: Form Events
	Slide 65: The MessageBox.Show Method
	Slide 67: C# Comment Style (Page 1)
	Slide 68: C# Comment Style (Page 2)
	Slide 69: C# Comment Style (Page 3)
	Slide 70: C# Comment Style (Page 4)
	Slide 71: C# Comment Style (Page 5)
	Slide 72: C# Comment Style (Page 6)
	Slide 73: C# Comment Style (Page 7)
	Slide 75: Declaring Constants
	Slide 76: The Convert Class
	Slide 78: “Windows Forms” File Structure
	Slide 80: The Solution (.sln) File
	Slide 81: The Project (.csproj) Files (Page 1)
	Slide 82: The Project (.csproj) Files (Page 2)

