CST141—Java Classes Page 1

1 Creating and Instantiating Java Classes and Objects
CST141

2 Java Classes
« Java programming is always objected-oriented (everything is a class) ...
— Classes are the individual pieces in programs
— Classes consist of pieces called methods
+ Building blocks from which applications are developed (reusable software)
— Classes and methods which you write
—Java class libraries, and classes and methods developed by others

3 Object-Oriented Programming
+ Classes are programmed representations of entities in the real world
* In OOP (object-oriented programming) each object has its own:
— Attributes (the data, e.g. instance variables)—defines the state of an object
— Behaviors (the methods)—defines the actions of the object

4 OOP Programming and Thinking
+ Aclass is a blueprint:
— Consider that a factory produces "heaters” from the “Heater” blueprint (class)
— A button on outside of the factory has the keyword new
— Press the button, out comes another “heater”

5 Objects and Classes
* Classes
— Represent all objects of a kind, e.g. "Heater”
— A model for creating "heater” objects
* Objects
—Represent “"things” from the real world, or from some problem domain (Example:
“The heater currently set to a temperature of 150 degrees”)

6 Characteristics of Objects
* Many instances (the objects themselves) can be created from a single class
» An object has attributes, values stored in its instance variables (data fields)
— The class defines what instance variables an object has (all objects instantiated from
the same class have exactly the same variables)

— However each object stores its own set of values for the instance variables (called
the state of the object)

7 Classes (Page 1)
+ In Java the unit of programming is the class
— Every Java application contains at least one programmer-defined class
* Each Java class is written and saved in a separate " java” file (there are exceptions)
+ Objects are instantiated from classes and work together to build an application

CST141—Java Classes Page 2

10

11

12

Classes (Page 2)

* By convention each word in a class name should begin with an uppercase letter, e.g.
— MyHeater

* When the program file is saved, the class name must be the same as the filename, e.g.
— MyHeaterjava

Classes (Page 3)

+ The layout of each class file includes:
— The outer wrapping made up of a class header which names the class
— The inner body of the class enclosed in left and right braces {always used in pairs}
provides the class’ functionality

Classes (Page 4)

* Format:
public class ClassName

{
instanceVariables
constructors
methods

}
— The words public and class are keywords
Classes (Page 5)

* Example:
public class Heater

{

private int temperature;

public Heater()
{

temperature = 15;

}
Classes (Page 6)

+ Example (alternative brace placement):
public class Heater {

private int temperature;

public Heater() {

CST141—Java Classes Page 3

14

16

21

22

23

24

temperature = 15;

}

Starting a New Project in BlueJ)

+ A BluelJ project is a folder that contains all the files that make up the application
* From Project menu, select New Project...

* Enter a Folder name: (where project will be stored) and click <Create> button

Creating a New Class in BlueJ

* Click <New Class...> button

* In the "Create New Class” dialog window:
— Enter Class Name: for new class (starts with uppercase letter)
— Keep Class radio button checked
— Click the <OK> button

+ Double-click the class icon to reach the “Code Editor”

Instance Variables (Page 1)

* Instance variables store the values for an object (e.g. its attributes/characteristics)

+ Each object has its own set of instance variables (data fields) no matter how many
objects are instantiated from a class

* The specific values assigned to the instance variables define the state of an object

Instance Variables (Page 2)
e Format:
public class ClassName

{

private type variableName;

* Example:
public class Heater
{
private int temperature;
private int min;
private int max;

Access Modifiers (Page 1)

» Access modifiers control whether or not class members (the class, variables or
methods) can be accessed from other classes
— Also called visibility modifiers

* There is no restriction accessing members from inside the class

Access Modifiers (Page 2)

CST141—Java Classes Page 4

25

26

27

28

» The modifier public specifies the member is accessible by any other class in the same
package (folder)
— The default if no access modifier is specified

+ The modifier private specifies the member is accessible only within its own class

» The modifier protected specifies the member is accessible only from one of its own
subclasses (Chapter 11)

Access Modifiers (Page 3)
» Example of an instance variable being declared as private:
private int temperature;
+ Example of a method being declared as public:
public void warmer()
{
temperature +=5;

}

The Constructor Method (Page 1)

* A special method that initializes the instance variables within the class

+ It has the same name as the class

+ Constructor executes whenever application instantiates an object from the class
» Execution guarantees that instance variables always will be in a consistent state

The Constructor Method (Page 2)
* Format:
public ConstructorName([parameter1, parameter2, ...])
//Name is the same as the class name
— Can take parameters but never returns a value
— Never specify a type, not even void
* Example 1:
public Heater()
{
temperature = 15;

}

The Constructor Method (Page 3)
+ Example 2:
public Heater(int initMin, int initMax)
{
temperature = 15;
min = initMin;
max = initMax;
increment = 5;

CST141—Java Classes

29

30

31

32

33

51

34

Encapsulation
+ Encapsulation is achieved by making instance variables (data fields) private
— Also called “information hiding”
* Only the class’ own public methods may directly inspect or manipulate its data fields

* Protects the data and makes the class easier to maintain since the functionality is
managed in just one place

Using set and get Methods (Page 1)
+ Instance variables which are private may not be manipulated from other classes

» Often public methods are provided inside a class to allow private instance variables to
be updated and/or retrieved

Using set and get Methods (Page 2)
+ Set methods (also called setter or mutator methods) change (update) an instance
variable value:
public void warmer()
{
temperature +=5;

}

Using set and get Methods (Page 3)

+ Get methods (also called getter, accessor or query methods) retrieve (return) a copy of
the value:
public int getTemperature()
{

return temperature;

Naming get and set Methods
+ Conventionally a method that updates an instance variable uses the word set and the
variable name, e.g.
— If the instance variable is temperature, the method name would be
setTemperature()
* Methods that retrieve a variable’s value use the word get and the variable name, e.g.
— If the instance variable is temperature, the method name would be

getTemperature()
Methods Types (Page 1)
* Methods that return a value have a type other than void
— The method's type must be the same as the type of the return value
UML Diagrams (Page 1)

+ Unified Modeling Language (UML) notation is a standardized method for representing
class structure

Page 5

CST141—Java Classes Page 6

* The notation is called a UML class diagram or simply a class diagram

35 UML Diagrams (Page 2)
* Instance variable (data field) format:
instanceVariable: type
* Instance variable example:
temperature: int

36 UML Diagrams (Page 3)
 Constructor format:
ConstructorName([parameterNameT: typel, ...])
— ConstructorName is the same as the class name
» Constructor examples:
Heater()
Heater(initMin: int, initMax: int)

37 UML Diagrams (Page 4)
* Method format:
methodName([parameterName1: typel, ... 1): returnType
+ Method examples:
warmer(): void
getTemperature(): int
setincrement(newlncrement: int): void

38 UML Diagrams (Page 5)
 Access modifiers:
— A plus sign (+) in front of a member means that its access is public
— A minus sign (=) in front of a member means that its access is private
+ Access modifier examples:
— temperature: int
+ Heater()
+ warmer(): void

40 Instantiating an Object (Page 1)
+ Instantiate means to create an object (create an instance from the class)
* The keyword new instantiates the object

41 Instantiating an Object (Page 2)
* Format:
ClassName objectVariable = new ConstructorName([parameters]);
* Example 1:
Heater heater1 = new Heater();
— The ClassName and ConstructorName() are the same

42 Instantiating an Object (Page 3)

CST141—Java Classes Page 7

43

45

46

47

48

49

* Format:
ClassName objectVariable = new ConstructorName([parameters]);
+ Example 2:
Heater heater2 = new Heater(initMin, initMax);
—In this example parameter values are being passed to the constructor method

Instantiating an Object (Page 4)
* To instantiate a new object in BlueJ:

— Right-click class name and the constructor statement from the shortcut menu, e.g.
new Heater() or new Heater (int, int)

— Enter a name for new object (or accept given default name) and then click <OK>
button

Calling Object Methods (Page 1)

* Object methods are called by naming the method preceded by the object name using
dot (.) notation

* Format:
objectName.methodName([parameters]);

* Example:
heater1.warmer();

Calling Object Methods (Page 2)

+ To call a method in BlueJ, right-click the object and select method name from the
shortcut menu

Return Values (Page 1)

+ Information (a single value) returned by the method when it concludes executing
* The return value is the method’s ”
+ The keyword return outputs (sends it back) the value from the called method

result”

Return Values (Page 2)
* Format:

return expression;

— The expression may be a value, variable, calculation, etc.
* Examples:

return 50;

return temperature;
return hoursWorked * payRate;

return "Gross Pay: " + grossPay;

Return Values (Page 3)
* The method header indicates whether the method will return a value by specifying the
method’s type:
— The type precedes the method name, e.g.
public int getTemperature()

CST141—Java Classes

50

52

53

54

55

56

— Or the keyword void indicates that the method does not return a value, e.g.
public void warmer()

Return Values in Blue)

* In Blue) methods that return values are called in the same way as methods that do not

— Right-click the object and select the method name from the shortcut menu
* The returned value is displayed in a dialog window

Methods Types (Page 2)
* Format:

public type methodName([parameterList])
+ Example:

public int getTemperature()

{

}

Methods Types (Page 3)
 If a value is not returned, the type is void
public void warmer()

{

}

State of an Object

* The set of all values assigned to instance variables for each individual object is called
its state

* In BluelJ the state of an object is viewed in "Object Inspector” window by either:
— Right-clicking the object and selecting the Inspect command
— Double-clicking the object

The Classic set Method (Page 1)
* The "classic” set method updates the value of an instance variable:
— Always has a parameter
— Always is type void
— Always assigns the parameter as the new value for the instance variable, e.g.
temperature = newTemperature;
— Sometimes validates the value of the parameter using an if statement

The Classic set Method (Page 2)

* Example 1:
public void setTemperture(int newTemperature)
{

temperature = newTemperature;

Page 8

CST141—Java Classes

57

58

59

67

68

69

The Classic set Method (Page 3)
* Example 2:
public void setTemperture(int newTemperature)
{
if (newTemperature > 0)
{

temperature = newTemperature;

}

The Classic get Method (Page 1)
* The “classic” get method returns the value of an instance variables:
— Never has a parameter
— Always has only a single statement which is return of an instance variable
return temperature;
— Always is same type as the instance variable it returns

The Classic get Method (Page 2)
* Example:
public int getTemperture()
{
return temperature;

}

Method Calls with Parameters
* Place the value or values inside the method name’s parentheses
* Format:
objectName.methodName([parameters]);
* Example:
multiplier1.setX(10);

Passing Parameters to Methods (Page 1)

* When a method needs additional values before executing, that information is passed
to it in the form of parameters

» Parameters are variables declared in the method’s header (also called the signature)

— Reminder: parameters also may need to be passed to a constructor method when
new objects are instantiated from a class

Passing Parameters to Methods (Page 2)
* Format:

[public] void/type methodName(type parameterl, [type parameter], ... 1)
+ Examples:

Heater(int initMin, int initMax)

public void setX(int newX)

Page 9

CST141—Java Classes

70

73

74

75

76

78

79

Passing Parameters to Methods (Page 3)
+ To pass parameters to a method in BlueJ:
— Right-click the object and select the method name from the shortcut menu

— For each parameter to be passed, in the dialog window enter value to be passed
and then click the <OK> button

— Strings must be contained in "quotation marks"

The System.out Variable

» The out variable (field) (which is member of the System class) is commonly known as
the standard output stream

» Employs methods that display output to the command window (called the terminal
window in Bluel), e.g.
System.out.printin(...);

The printin() Method (Page 1)
* The printIn() method is contained within (a member of) the System.out output field
* Prints a line of text in the terminal window

The printin() Method (Page 2)

» Method printIn() executes a carriage return and line feed after printing
— Equivalent of the <Enter> key

+ Method print() displays the text output without the carriage return/line feed
— Does not advance to the next line

The printin() Method (Page 3)

* Format:
System.out.printin(outputString);

* Example:

System.out.printin("No negative values");

Strings

+ Characters contained in quotation marks and stored in memory using Unicode coding

are called strings

"Do not enter negative value"
+ May be a combination of letters, numbers and other special characters
* Blank spaces within strings are not ignored
+ String variables store strings of characters

Concatenation

» The concatenation operator (+) is used to join a string (or string variable) to the value

of one or more variables into a single string
* Format:

"String text" + expression [+ ...]
* Example:

"Pay rate: " + payRate

Page 10

CST141—Java Classes

80

81

82

98

99

« If variable payRate = 20, the string will be:
"Pay rate: 20"

Local Variables (Page 1)
+ Instance variables are one sort of variable
— Store values through the life of an object
— Accessible throughout the class (e.g. are global to the entire class)
* Methods can include shorter-lived variables referred to as local variables
— They are accessible only from within the body of the method
— They exist (persist) only as long as the method is being executed

Local Variables (Page 2)
+ Example:
public void calculateGrossPay()

{

double regularPay, overtimePay;

if (hoursWorked > 40)
{

regularPay = ...
}

else

{

}

Local Variables (Page 3)
+ In addition parameter variables also are local variables since they are accessible only
from within the body of the method:
public void setX(int newX)
{
X = newX;

}

The Java API (Page 1)
* The Java Programming Language API (Application Programming Interface) is a “rich”
set of classes
— Contains thousands of classes with tens of thousands of methods
— Used by Java developers to make programming much easier—they do not have to
understand the implementation (coding)
— APl elements are used simply by understanding the interface (documentation)

The Java API (Page 2)

Page 11

CST141—Java Classes

100

101

103

104

105

106

+ Part of the JDK (Java Development Kit) that is installed along with the compiler
— Also called the “Java Class Library”

* The competent Java programmer must be able to work with the libraries:
— Know the most important classes by name
— Be able to find out about other classes

The Java API (Page 3)
* Not necessary to view the code for library methods or see how they are implemented

* You just need to know the class name, understand its methods and what they do, as
well as their parameters and return types

* Information is available by reading on-line documentation for each class on the
Internet

Package Names
+ Java classes located in the API are organized into related groups called packages

+ Each piece of a package name is actually a folder (directory) where class is located, e.g.

» For example the "Date” class is located in the java.util package (folder)
—So its partial path is: ../java_api/java/util/Date.class

The import Statement (Page 1)
+ Classes from the Java APl must be imported using an import statement ...
— Except classes from the java.lang package which are fundamental to the
development of Java programs (e.g. System, String, Math, etc.)
* Then they can be used like other classes from the current project
» The import statement(s) should be the first statement(s) in the class file

The import Statement (Page 2)
* Format:
import packageName.ClassName;
* Example:
import java.util.Date;
—import statements come before class header
» Example to import an entire package (that is all the classes in the folder):
import java.util.*;

Bypassing the import Statement
+ Class names can be reference directly (skipping the import statement) in Java
statements by fully qualifying the name
— Prefixing the package name to the class name
* Format:
packageName.ClassName
+ Example:
java.util.Date time = new java.util.Date();

The Date Class (Page 1)

Page 12

CST141—Java Classes

107

108

109

110

111

* Instantiates objects that represent current (or specific) date and time
* Measured in number of milliseconds since 12:00 midnight January 1, 1970 GMT
(Greenwich Mean Time)

+ Found in the java.util package (must be imported prior to usage):
import java.util.Date;

The Date Class (Page 2)

» The no-argument constructor for class Date instantiates in object that stores the date
and time it was created:
Date dateObject = new Date();

+ Example:
Date payrollDate = new Date();

The Date Class (Page 3)
+ Alternate constructor takes a long integer that represents the number of milliseconds
since 12:00 midnight January 1, 1970 GMT:
Date dateObject = new Date(milliseconds);
+ Example:
Date payrollDate = new Date(200000);
— The payrollDate will be Wed, Dec 31, 1969, 19:03:20 EST (Thur, Jan 1, 1970, 12:03:20
GMT) (adjusted to operating system time zone)

The setTime() Method of Class Date
* The type void setTime() method sets a new number of elapsed milliseconds since
12:00 midnight January 1, 1970 GMT
* Format:
dateObject.setTime(milliseconds);
* Example:
payrollDate.setTime(200000);

The getTime() Method of Class Date
 Returns as type long number of milliseconds since 12:00 midnight January 1, 1970
GMT for the object’s current date and time
* Format:
dateObject.getTime()
* Example:
long millisecs = payrollDate.getTime();

The toString() Method of Class Date
+ Returns a type String representation of the object's date and time
+ Adjusted to operating system'’s time zone
— E.g. "Tue Aug 27 10:13:32 EDT 2013"
* Format:
dateObject.toString()
+ Example:

Page 13

CST141—Java Classes Page 14

System.out.printIn(payrollDate.toString());

113 Static Members (Page 1)
+ Class components (variables and methods) available to every object derived from class
+ Static member declaration includes the keyword static, e.g.
» Format for static method declaration:
public static type methodName([parameterList])
{..
* Example:
public static double getPayRate()
{..

114 Static Members (Page 2)
* Only one instance of the member exists which is shared by all objects
+ A static method cannot access class instance members (methods and variables)
* May be called:
— Using the class name (the norm):
Payee.getPayRate();
—Or an object name
payl.getPayRate();

115 Static Members (Page 3)
+ Static class members exist as soon as the class is loaded into memory ...
— Even before objects of the class have been instantiated
—In such a case, they must be referenced by their class name, not an object name
(because no object yet exists)
+ Underline static members in UML diagram

116 Static Class Variables (Page 1)
» Review: Instance variables hide their values from other objects, even if objects are
instantiated from the same class

+ A static class variable shares the same data (one RAM location) with all objects of the
same class (class scope)
+ May also be called simply called static variables or class variables

117 Static Class Variables (Page 2)
» For example:
— Two objects instantiated from the Payee class can share a single static value for
“payRate”
+ Although each has its own "hoursWorked”

— Objects instantiated from a SavingsAccount class can share a single value for
“interestRate”

* Although each has its own “savingsBalance” value

118 Declaring Static Class Variables

CST141—Java Classes

119

122

123

124

126

127

Static variables are declared by including the keyword static in the declaration
* Format:
private static type variableName;
* Example:
private static double payRate;
« Static variables should be set (updated in) or get (retrieved from) in static methods

Data Fields

+ Both instance variables and static class variables are data fields:
— Instance variables—each object has its own set of “hidden” instance values no
matter how many objects are instantiated from the class

— Static class variables—share the same data with all objects of instantiated from the
class

The main() Method (Page 1)
* Every Java application must have a single method named main()
— There can be only one instance of main() in the entire application

+ The method may be placed in any class file, but usually is found in the application’s
controlling class

The main() Method (Page 2)

* Whenever an application executes, the Java runtime (JVM—]Java Virtual Machine) finds
main() and executes it first

* Normal execution of an application starts and ends with the main() method

—The main() method then directly or indirectly calls all the other methods within all
classes in the application

The main() Method (Page 3)
+ The method always has the same header:
public static void main(String[] args)
{..
— Not necessary to completely understand it at this time although ...
« It has public access (although it never is called from another method)
« It is static and therefore never instantiated
« It is void and never returns a value
« The parameter args is a String[] array

Constants (Page 1)

+ A constant is a programmer-named identifier whose value cannot change as a result of
some program action

* Indicated by using the keyword final

Constants (Page 2)

* Usually is given an initial (and final) value in the declaration statement
* Format:

Page 15

CST141—Java Classes

128

129

132

134

135

136

[public/private] final [static] type constantName [= value];
* Example:
private final double PAY_RATE = 10;
—Java standard—all constants are in all caps with underscore between words (also in
UML)

Constants (Page 3)

+ A constant that is an class data field may be declared as final but initialized later in one
of the constructors
— It may not be initialized later in any other method within the class

Constants (Page 4)
* Example:
public class Payee

{

private final double PAY_RATE;

public Payee()
{

PAY_RATE = 10;
}

Immutable Objects
+ An object whose contents may not be changed once it is instantiated and initialized in
the constructor
— All data fields are private
— There are no set (mutator) for any data field
—No get (accessor) can return a reference to a data field that is mutable

Scope (Page 1)
 The scope of a local variable is the block in which it is declared:
— Instance variables and static class variables have class scope even though declared
with the access modifier private
« Accessible from any method in the class
— Local variables (including parameters) have method scope
« Accessible only in the method in which declared

Scope (Page 2)

* Scope may limited further by subordinate blocks with methods, e.g.
—An if or loop (for or while) block
— Any set of braces within the method

Life Time

Page 16

CST141—Java Classes

137

138

139

140

*+ The lifetime (or simply life) of a variable is the time of execution (the time is exists)
within the block in which it is declared:

— For a static class variable as soon as the class is loaded into memory

— For an instance variable as soon as the object is instantiated and as long as it is in
memory

— Within a method only as long as the method still is executing
— Or within lesser blocks as well

The this Reference (Page 1)
+ Every object has a reference to itself in the keyword this
+ Reference to instance members (variables and methods) with the prefix this, e.g.
this.hoursWorked
this.getHoursWorked()
— Refers to the private instance variable of the object ...
— Not the local variable within the method

The this Reference (Page 2)
* For example (although the convention in this case is to not use the this reference):
public void printPayee()
{
System.out.printIn("Hours worked: " + this.hoursWorked);
System.out.printIn("Pay rate: " + this.payRate);
System.out.printIn("Gross pay: " + this.getGrossPay());
!

The this Reference and Parameters (Page 1)

* It is common to define parameter variable names that are the same as instance
variable names in the set methods

* In this case the local parameter name takes precedence over the instance variable
name

— The instance variable becomes hidden
 Prefix this reference to the instance variable name to access to it

The this Reference and Parameters (Page 2)

+ For example, in the following set method:
public class Payee
{
private double hoursWorked;
private double payRate;

public setPayRate(double payRate)
{

Page 17

CST141—Java Classes

142

143

144

145

this.payRate = payRate;
}

Class Variables and Parameters (Page 1)

* If a parameter variable name is the same as a static class variable name in a set
method or constructor ...

* Prefix the class name to the static variable name to access to it, e.g.
ClassName staticVariable

Class Variables and Parameters (Page 2)
» For example if payRate is static:
public class Payee
{
private double hoursWorked;
private static double payRate;

public static payRate(double payRate)
{

Payee.payRate = payRate;
}

Using this to Invoke Constructor (Page 1)

* Use of this by itself in one constructor refers to another constructor in the class
— A good habit when there is more than one constructor in the class

* Must be the first statement in a constructor before any other statement

Using this to Invoke Constructor (Page 2)
* Example:
public class Payee
{
private double hoursWorked;
private double payRate;
public Payee()
{
this(0, 0);
}
public Payee(double hoursWorked, double payRate)
{
setHoursWorked(hoursWorked);
setPayRate(payRate);

Page 18

CST141—Java Classes Page 19

146 Responsibility Driven Design (Page 1)
+ "Responsibility drive design” is the concept that each object is responsible for its own
data (instance variable values)
+ All manipulation of instance variables is handing exclusively in set and get methods

147 Responsibility Driven Design (Page 2)
+ To enhance this design, the object-oriented standard in Java is to have the constructor
not directly update instance variables
— Instead constructors initialize instance variables by calling and passing their
parameters to the set methods

148 Responsibility Driven Design (Page 3)
* Example:
public Payee(double hoursWorked, double payRate)

{
setHoursWorked(hoursWorked);

setPayRate(payRate);

public setHoursWorked(double hoursWorked)

{
this.hoursWorked = hoursWorked;

public setPayRate(double payRate)

{
this.payRate = payrate;

