
CST141--Inheritance Page 1

Objected-Oriented and Inheritance

CST141

OOP

Object-Oriented Programming is characterized by three features:

– Encapsulation

– Inheritance

•New classes created from (extends) existing classes by absorbing (inheriting)
their attributes/properties (instance variables) and behaviors (methods)

– Polymorphism

•The ability of an object to take on many forms; a common use occurs in OOP
when a parent class reference is used to refer to a child class object

AnnualSalaryCheck and HourlySalaryCheck Classes without Inheritance

AnnualSalaryCheck

- checkNumber

- employeeID

- annualSalary

+ setCheckNumber()

+ setEmployeeID()

+ setAnnualSalary()

+ getCheckNumber()

+ getEmployeeID()

+ getAnnualSalary()

+ getGrossPay()

HourlySalaryCheck

- checkNumber

- employeeID

- hoursWorked

- payRate

+ setCheckNumber()

+ setEmployeeID()

+ setHoursWorked()

+ setPayRate()

+ getCheckNumber()

+ getEmployeeID()

+ getHoursWorked()

+ getPayRate()

+ getGrossPay()

Code Duplication without Inheritance

Classes that operate on similar entities often have many identical elements

– Makes maintenance difficult/more work

– Introduces danger of bugs through incorrect maintenance

Code duplication also can carry over introducing problems to the driver classes

Inheritance

When a new class is created, it inherits the instance variables and methods of any
previously defined superclass

This subclass gets its initial features from the direct superclass

An indirect superclass is inherited from two or more levels above in a class hierarchy

The Subclass

The subclass is usually larger than its superclass …

– Because it adds instance variables and methods of its own to those of the
superclass

– Also it is possible to define additions to, or replacements for, inherited superclass
features

It is more specific than the superclass …

– Therefore it has a smaller number of situations in which it can be used

The Superclass

Each superclass exists at the top of a hierarchical relationship with its subclasses

A superclass may have several direct subclasses which inherit its features

A subclass to one superclass may be a superclass to other subclasses

A Payroll Hierarchy

A College Inheritance Hierarchy

“Has a …” vs. “Is a …”

These two phrases that express the nature of relationships and class attributes
between superclasses and subclasses in inheritance:

– A class to its own attributes (“has a”)

– A subclass to the superclass from which it inherits additional attributes (“is a”)

“Has a …” Relationships

“Has a” relationship expresses the attributes (instance variables) within the class
(called composition)

A class “has a(n)” attribute, i.e.

– HourlySalaryCheck “has an” HoursWorked, “has a” Pay Rate

– CommunityMember “has a” First Name, “has a” Last Name, “has an” Address, etc.

“Is a …” Relationships

“Is a” relationship expresses inheritance

Subclass “is a” superclass, i.e.

– AnnualSalaryCheck “is a” PayrollCheck

•And has all the attributes of a PayrollCheck, i.e. if PayrollCheck “has a” Check
Number attribute, AnnualSalaryCheck does also

– Teacher “is a” Faculty

•And has all the attributes of a Faculty member, i.e. if Faculty “has a” Rank
attribute, Teacher does also

Class Libraries (Page 1)

New classes inherit features from an organization's own class library

When developing a new class:

– First try to find a place for it in the existing inheritance hierarchy

– Only if it does not fit into the current class library structure should it be the
beginning of a new inheritance hierarchy segment

Class Libraries (Page 2)

Java API uses inheritance to build its vast library collection of classes

A Payroll Hierarchy

PayrollCheck, AnnualSalaryCheck and HourlySalaryCheck Classes with
Inheritance

AnnualSalaryCheck

annualSalary

setAnnualSalary()

getAnnualSalary()

getGrossPay()

HourlySalaryCheck

hoursWorked

payRate

setHoursWorked()

setPayRate()

getHoursWorked()

getPayRate()

getGrossPay()

PayrollCheck.java (Page 1)

PayrollCheck.java (Page 2)

PayrollCheck.java (Page 3)

PayrollCheck.java (Page 4)

PayrollCheck.java (Page 5)

A PayrollLedger Hierarchy

The Keyword extends (Page 1)

Declares that this class is a direct subclass of the superclass that is named following
the keyword extends

The class inherits all public and protected members (instance variables and methods)
of the superclass

A class may extend (inherit) directly only from one class (its direct superclass)

The Keyword extends (Page 2)

Format:

public class SubClassName extends DirectSuperClassName {

Examples:

public class HourlySalaryCheck extends PayrollCheck {

public class Faculty extends Employee {

Superclass Constructor Call (Page 1)

Subclass constructors always must contain a call to “super” (to its direct superclass
constructor method), or ...

If none is written, the compiler inserts one (an implicit call without parameters)

– Works only if superclass has a constructor without parameters

Superclass Constructor Call (Page 2)

Must be the first statement in the body of the subclass constructor

Example:

public AnnualSalaryCheck(int checkNumber, int employeeID, double annualSalary)

{

super(checkNumber, employeeID);

setAnnualSalary(annualSalary);

}

Calling Superclass Methods

The public members of a superclass are callable from the subclass

Format:

[super.]superclassMethod(parameters)

– Keyword super is not required (and is not standard usage) unless overriding
superclass methods

Examples:

super.toString()

super.getEmployeeID;

getEmployeeID;

Method Overriding (Page 1)

To modify the implementation of an inherited method in a subclass

Example:

public String toString()

{

return super.toString()

+ "\nHours worked: " + getHoursWorked()

+ "\nPay rate: " + getPayRate()

+ "\nGross pay: " + getGrossPay();

}

Method Overriding (Page 2)

Superclass method must be public (accessible)

– A private superclass method cannot be overridden

Methods that are static can be inherited but not overridden

– To access a “hidden” (because a method of the same name exists in the subclass)
static method in a superclass, use the class name, e.g.

SuperclassName.staticMethodName()

The @Override Annotation

Placing @Override before a subclass method denotes that the method must override
the method in the superclass

Format:

@Overrides

public type subclassMethodName()

{ …

Example:

@Overrides

public String toString()

{ …

HourlySalaryCheck.java(Page 1)

HourlySalaryCheck.java(Page 2)

HourlySalaryCheck.java(Page 3)

HourlySalaryCheck.java(Page 4)

Instantiate an HourlyPayrollCheck object

The DecimalFormat Class (Page 1)

Class used to create objects used to format numbers for output

Stored in the java.text package

import java.text.DecimalFormat;

Format:

DecimalFormat objectName = new DecimalFormat("formatString");

– formatString argument is a String of characters that specify how numbers will be
formatted

The DecimalFormat Class (Page 2)

Example 1:

DecimalFormat commaFormat = new DecimalFormat("#,##0");

The String argument "#,##0" specifies that the number will display:

– With commas at the thousands, millions, etc.

•Only if number is 1000 or greater; otherwise printing of leading zeros and
commas are from the 10’s position to the left are suppressed

– Rounded to the nearest integer

The DecimalFormat Class (Page 3)

Example 2:

DecimalFormat twoDecimals = new DecimalFormat("0.00");

The String argument "0.00" specifies that the number will display:

– At least one digit to the left of the decimal point

– Exactly two digits (rounded) to the right of the decimal point

The DecimalFormat Class (Page 4)

The functionality of Examples 1 and 2 can be combined to add commas to the two
decimals rounded:

DecimalFormat grossPayFormat = new DecimalFormat("#,##0.00");

A floating dollar sign could be inserted prior to the rest of the format string:

DecimalFormat grossPayFormat = new DecimalFormat("$#,##0.00");

The format Method

Formats a numeric value according to the DecimalFormat object's format string

Takes one variable/value (either float or double) as its single argument

Format:

decimalFormatObject.format(float/double);

Example:

JOptionPane.showMessageDialog(null, grossPayFormat.format(grossPay));

Driver1.java (Version 2) (Page 1)

Driver1.java (Version 2) (Page 2)

A PayrollLedger Hierarchy

AnnualSalaryCheck.java (Page 1)

AnnualSalaryCheck.java (Page 2)

AnnualSalaryCheck.java (Page 3)

AnnualSalaryCheck.java (Page 4)

AnnualSalaryCheck.java (Page 5)

AnnualSalaryCheck.java (Page 6)

Driver1.java (Page 2)

Extendible Classes (Page 1)

Software is extendible when it can be easily updated and reused to do something that
the original author never imagined

Extendibility is enhanced by:

– Loose coupling—few connections

– Class cohesion —classes with one single, well defined entity

– Responsibility-driven design in which classes are responsible for manipulating their
own data

Extendible Classes (Page 2)

When developing a new class, look to find a place where it can extend another class
in the existing inheritance hierarchy

Sometime superclasses in an inheritance hierarchy only serve to support subclasses

– Such superclasses are called abstract classes (never have objects instantiated from
them)

A PayrollLedger Hierarchy

MiniQuiz

Define a new class ConsultantCheck that extends from PayrollCheck for consultants
who receive a check based on a one-time payment

Consultant Check UML Diagram

MiniQuiz (Page 1)

A single data field payment of type double stores the value of the one-time payment

The no-argument constructor passes values for checkNumber, employeeID and
payment to the overloaded constructor

The ConsultantCheck Class (Page 1)

public class ConsultantCheck extends PayrollCheck

{

private double payment;

public ConsultantCheck()

{

// Implicit call to superclass Payrol

this(0, 0, 0.0);

}

The ConsultantCheck Class (Image page 1)

MiniQuiz (Page 2)

The int, int, double constructor passes:

– checkNumber and employeeID to the superclass constructor

– payment to the set method

The ConsultantCheck Class (Page 2)

public ConsultantCheck(int checkNumber,

int employeeID,

double payment)

{

// Explicit call to superclass PayrollChe

super(checkNumber, employeeID);

setPayment(payment);

}

The ConsultantCheck Class (Image page 2)

MiniQuiz (Page 3)

The set method assigns the parameter to the payment data field if that parameter is
zero (0) or greater

– Value zero (0) indicates that the payment field is empty

The ConsultantCheck Class (Page 3)

public void setPayment(double payment)

{

if (payment >= 0)

{

this.payment = payment;

}

}

The ConsultantCheck Class (Image page 3)

MiniQuiz (Page 4)

The get method returns the value of the payment data field

The getGrossPay() method returns the value of the getPayment() method

The ConsultantCheck Class (Page 4)

public double getPayment()

{

return payment;

}

public double getGrossPay()

{

return getPayment();

}

}

The ConsultantCheck Class (Image page 4)

MiniQuiz (Page 5)

The toString() method returns:

– A formatted String representation of the grossPay data field formatted to dollars
and cents including text labels

– Preceded by the checkNumber and employeeID data fields from a call to toString()
method of superclass PayrollCheck

The ConsultantCheck Class (Page 5)

public String toString()

{

return super.toString()

+ "\nPayment: "

+ dollarsCents.format(

getGrossPay());

}

}

The ConsultantCheck Class (Image page 5)

Driver1.java (Page 2)

The Class Object (Page 1)

The superclass of all classes (either direct or indirect) is Object from the Java API …

– If a class definition does not explicitly extend another class, it extends Object
directly

The following two class headers effectively are identical:

public class PayrollCheck {

public class PayrollCheck extends Object

{

The Class Object (Page 2)

As a result all classes inherit eleven (11) public methods from Object including:

– toString(), equals() and hashCode()

Additionally classes from the Java API use inheritance extensively and extend also
from class Object (directly or indirectly)

A PayrollLedger Hierarchy

PayrollCheck.java (Page 1)

The toString() Method of Class Object

Method toString() is a member of class Object that returns a String representation of
an object

All classes inherit the toString() method either directly or indirectly from Object

– May be called or overridden

Returns the class name of which the object is an instance and a hash code (start
address where the object is stored in memory in hexadecimal), e.g.

– HourlySalaryCheck@15037e5

PayrollCheck.java (Object.toString() —Page 5)

Advantages of Inheritance (so far)

Avoiding code duplication

Code reuse

Easier maintenance

Extendibility

Subtyping (Page 1)

Types defined by a subclass definition actually are subtypes of their superclass

If HourlySalaryCheck and AnnualSalaryCheck classes are extensions of class
PayrollCheck:

– The superclass object:

PayrollCheck pay;

– Can be instantiated by calling its subtype constructor:

pay = new AnnualSalaryCheck();

– Or in a single statement:

PayrollCheck pay = new AnnualSalaryCheck();

Subtyping (Page 2)

Now the subtyped object can differentiate between getGrossPay() methods of
HourlySalaryCheck and AnnualSalaryCheck classes when called:

JOptionPane.showMessageDialog(null, pay.getGrossPay());

– This is an example of polymorphism (meaning “many shapes” or “many forms”)

– In this case the method behavior changes based upon which constructor was used
to instantiate it

Driver2.java (Page 1)

Driver2.java (Page 2)

The ArrayList Class (Page 1)

Used to create a list of items in a flexible-sized collection

The capacity of an ArrayList object is initialized to start at ten (10) elements but
grows as items are added to it

The ArrayList Class (Page 2)

The class has a whole series of methods of its own which can be used to
automatically manipulate objects instantiated from it

Found in the java.util package of the Java API library:

import java.util.ArrayList;

The ArrayList Class (Page 3)

Format to declare an ArrayList object:

ArrayList<type> objectName;

Example:

private ArrayList<String> departmentList;

– ArrayList is a generic class requiring a subtype specified as a parameter

– Enclosed in <chevrons>, e.g. <angle brackets>

– The example data field above departmentList is called an “ArrayList of Strings”

Instantiating ArrayList Objects (Page 1)

Similar syntax to that which is used when instantiating objects …

– Includes the second type parameter enclosed in <chevrons>

Format:

objectName = new ArrayList<type>();

Example:

departmentList = new ArrayList<String>();

Instantiating ArrayList Objects (Page 2)

Format to declare and instantiate the object in a single statement:

ArrayList<type> objectName = new ArrayList<type>();

Example:

ArrayList<String> departmentList = new ArrayList<String>();

The add() Method for ArrayList

Appends this element (object) to the end of the ArrayList collection

Format:

arrayListObject.add(object);

– The object represents the value added as a new element to the ArrayList collection

Example:

departmentList.add("COMPUTER");

The size() Method for ArrayList

Returns an int which is the number of elements in the ArrayList collection

Format:

arrayListObject.size()

Example:

JOptionPane.showMessageDialog(null, departmentList.size());

The get() Method for ArrayList

Retrieves an individual element from the specified position in ArrayList collection

Format:

arrayListObject.get(index)

– The index is an int between zero (0) and one less than the number of items in the
ArrayList

Example:

JOptionPane.showMessageDialog(null, departmentList.get(index));

– The element is not removed from the collection

The indexOf() Method for ArrayList (Page 1)

Searches for first occurrence of the object argument in the ArrayList collection—tests
for an equal to (==) condition

The method returns either :

– An int which is the index representing its position in the ArrayList collection

– Or -1 if the search criteria value is not found

The indexOf() Method for ArrayList (Page 2)

Format:

arrayListObject.indexOf(object)

Example:

index = departmentList.indexOf("COMPUTER");

The remove() Method for ArrayList (Page 1)

Deletes an individual element from the specified position in ArrayList collection

All elements after the deleted item move up one element to fill the gap

The remove() Method for ArrayList (Page 2)

Format:

arrayListObject.remove(index);

The index is an integer between zero (0) and one less than the number of elements
in the ArrayList

Example:

departmentList.remove(index);

MiniQuiz No. 2 (Page 1)

Open the “college” project and create a new class Alum that extends from
CommunityMember

There are two data fields:

– gradYear—the year the alumnus or alumna graduated

– degree—the degree granted to the alumnus or alumna

An ArrayList of Strings stores valid degrees including “B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”

Alum.java (Page 1)

MiniQuiz No. 2 (Page 2)

The constructor:

– Takes two Strings for firstName and lastName, an int for gradYear and a String for
degree

– Passes firstName and lastName to the superclass constructor

– Instantiates the ArrayList and assigns the values (“B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”)

– Calls the set methods for gradYear and degree

Alum.java (Page 2)

MiniQuiz No. 2 (Page 3)

The set method for gradYear updates the data field if the parameter is between 1960
and 2013, or is zero (0) meaning is not set

The set method for degree updates the data field if the parameter is in the degrees
ArrayList

Include get methods for gradYear and degree

The toString() method links to the toString() of CommunityMember and includes
labels before the return values of the two get methods

Alum.java (Page 3)

Alum.java (Page 4)

Alum.java (Page 5)

Alum.java (Page 6)

1

2

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

Objected-Oriented and Inheritance

CST141

OOP

Object-Oriented Programming is characterized by three features:

– Encapsulation

– Inheritance

•New classes created from (extends) existing classes by absorbing (inheriting)
their attributes/properties (instance variables) and behaviors (methods)

– Polymorphism

•The ability of an object to take on many forms; a common use occurs in OOP
when a parent class reference is used to refer to a child class object

AnnualSalaryCheck and HourlySalaryCheck Classes without Inheritance

AnnualSalaryCheck

- checkNumber

- employeeID

- annualSalary

+ setCheckNumber()

+ setEmployeeID()

+ setAnnualSalary()

+ getCheckNumber()

+ getEmployeeID()

+ getAnnualSalary()

+ getGrossPay()

HourlySalaryCheck

- checkNumber

- employeeID

- hoursWorked

- payRate

+ setCheckNumber()

+ setEmployeeID()

+ setHoursWorked()

+ setPayRate()

+ getCheckNumber()

+ getEmployeeID()

+ getHoursWorked()

+ getPayRate()

+ getGrossPay()

Code Duplication without Inheritance

Classes that operate on similar entities often have many identical elements

– Makes maintenance difficult/more work

– Introduces danger of bugs through incorrect maintenance

Code duplication also can carry over introducing problems to the driver classes

Inheritance

When a new class is created, it inherits the instance variables and methods of any
previously defined superclass

This subclass gets its initial features from the direct superclass

An indirect superclass is inherited from two or more levels above in a class hierarchy

The Subclass

The subclass is usually larger than its superclass …

– Because it adds instance variables and methods of its own to those of the
superclass

– Also it is possible to define additions to, or replacements for, inherited superclass
features

It is more specific than the superclass …

– Therefore it has a smaller number of situations in which it can be used

The Superclass

Each superclass exists at the top of a hierarchical relationship with its subclasses

A superclass may have several direct subclasses which inherit its features

A subclass to one superclass may be a superclass to other subclasses

A Payroll Hierarchy

A College Inheritance Hierarchy

“Has a …” vs. “Is a …”

These two phrases that express the nature of relationships and class attributes
between superclasses and subclasses in inheritance:

– A class to its own attributes (“has a”)

– A subclass to the superclass from which it inherits additional attributes (“is a”)

“Has a …” Relationships

“Has a” relationship expresses the attributes (instance variables) within the class
(called composition)

A class “has a(n)” attribute, i.e.

– HourlySalaryCheck “has an” HoursWorked, “has a” Pay Rate

– CommunityMember “has a” First Name, “has a” Last Name, “has an” Address, etc.

“Is a …” Relationships

“Is a” relationship expresses inheritance

Subclass “is a” superclass, i.e.

– AnnualSalaryCheck “is a” PayrollCheck

•And has all the attributes of a PayrollCheck, i.e. if PayrollCheck “has a” Check
Number attribute, AnnualSalaryCheck does also

– Teacher “is a” Faculty

•And has all the attributes of a Faculty member, i.e. if Faculty “has a” Rank
attribute, Teacher does also

Class Libraries (Page 1)

New classes inherit features from an organization's own class library

When developing a new class:

– First try to find a place for it in the existing inheritance hierarchy

– Only if it does not fit into the current class library structure should it be the
beginning of a new inheritance hierarchy segment

Class Libraries (Page 2)

Java API uses inheritance to build its vast library collection of classes

A Payroll Hierarchy

PayrollCheck, AnnualSalaryCheck and HourlySalaryCheck Classes with
Inheritance

AnnualSalaryCheck

annualSalary

setAnnualSalary()

getAnnualSalary()

getGrossPay()

HourlySalaryCheck

hoursWorked

payRate

setHoursWorked()

setPayRate()

getHoursWorked()

getPayRate()

getGrossPay()

PayrollCheck.java (Page 1)

PayrollCheck.java (Page 2)

PayrollCheck.java (Page 3)

PayrollCheck.java (Page 4)

PayrollCheck.java (Page 5)

A PayrollLedger Hierarchy

The Keyword extends (Page 1)

Declares that this class is a direct subclass of the superclass that is named following
the keyword extends

The class inherits all public and protected members (instance variables and methods)
of the superclass

A class may extend (inherit) directly only from one class (its direct superclass)

The Keyword extends (Page 2)

Format:

public class SubClassName extends DirectSuperClassName {

Examples:

public class HourlySalaryCheck extends PayrollCheck {

public class Faculty extends Employee {

Superclass Constructor Call (Page 1)

Subclass constructors always must contain a call to “super” (to its direct superclass
constructor method), or ...

If none is written, the compiler inserts one (an implicit call without parameters)

– Works only if superclass has a constructor without parameters

Superclass Constructor Call (Page 2)

Must be the first statement in the body of the subclass constructor

Example:

public AnnualSalaryCheck(int checkNumber, int employeeID, double annualSalary)

{

super(checkNumber, employeeID);

setAnnualSalary(annualSalary);

}

Calling Superclass Methods

The public members of a superclass are callable from the subclass

Format:

[super.]superclassMethod(parameters)

– Keyword super is not required (and is not standard usage) unless overriding
superclass methods

Examples:

super.toString()

super.getEmployeeID;

getEmployeeID;

Method Overriding (Page 1)

To modify the implementation of an inherited method in a subclass

Example:

public String toString()

{

return super.toString()

+ "\nHours worked: " + getHoursWorked()

+ "\nPay rate: " + getPayRate()

+ "\nGross pay: " + getGrossPay();

}

Method Overriding (Page 2)

Superclass method must be public (accessible)

– A private superclass method cannot be overridden

Methods that are static can be inherited but not overridden

– To access a “hidden” (because a method of the same name exists in the subclass)
static method in a superclass, use the class name, e.g.

SuperclassName.staticMethodName()

The @Override Annotation

Placing @Override before a subclass method denotes that the method must override
the method in the superclass

Format:

@Overrides

public type subclassMethodName()

{ …

Example:

@Overrides

public String toString()

{ …

HourlySalaryCheck.java(Page 1)

HourlySalaryCheck.java(Page 2)

HourlySalaryCheck.java(Page 3)

HourlySalaryCheck.java(Page 4)

Instantiate an HourlyPayrollCheck object

The DecimalFormat Class (Page 1)

Class used to create objects used to format numbers for output

Stored in the java.text package

import java.text.DecimalFormat;

Format:

DecimalFormat objectName = new DecimalFormat("formatString");

– formatString argument is a String of characters that specify how numbers will be
formatted

The DecimalFormat Class (Page 2)

Example 1:

DecimalFormat commaFormat = new DecimalFormat("#,##0");

The String argument "#,##0" specifies that the number will display:

– With commas at the thousands, millions, etc.

•Only if number is 1000 or greater; otherwise printing of leading zeros and
commas are from the 10’s position to the left are suppressed

– Rounded to the nearest integer

The DecimalFormat Class (Page 3)

Example 2:

DecimalFormat twoDecimals = new DecimalFormat("0.00");

The String argument "0.00" specifies that the number will display:

– At least one digit to the left of the decimal point

– Exactly two digits (rounded) to the right of the decimal point

The DecimalFormat Class (Page 4)

The functionality of Examples 1 and 2 can be combined to add commas to the two
decimals rounded:

DecimalFormat grossPayFormat = new DecimalFormat("#,##0.00");

A floating dollar sign could be inserted prior to the rest of the format string:

DecimalFormat grossPayFormat = new DecimalFormat("$#,##0.00");

The format Method

Formats a numeric value according to the DecimalFormat object's format string

Takes one variable/value (either float or double) as its single argument

Format:

decimalFormatObject.format(float/double);

Example:

JOptionPane.showMessageDialog(null, grossPayFormat.format(grossPay));

Driver1.java (Version 2) (Page 1)

Driver1.java (Version 2) (Page 2)

A PayrollLedger Hierarchy

AnnualSalaryCheck.java (Page 1)

AnnualSalaryCheck.java (Page 2)

AnnualSalaryCheck.java (Page 3)

AnnualSalaryCheck.java (Page 4)

AnnualSalaryCheck.java (Page 5)

AnnualSalaryCheck.java (Page 6)

Driver1.java (Page 2)

Extendible Classes (Page 1)

Software is extendible when it can be easily updated and reused to do something that
the original author never imagined

Extendibility is enhanced by:

– Loose coupling—few connections

– Class cohesion —classes with one single, well defined entity

– Responsibility-driven design in which classes are responsible for manipulating their
own data

Extendible Classes (Page 2)

When developing a new class, look to find a place where it can extend another class
in the existing inheritance hierarchy

Sometime superclasses in an inheritance hierarchy only serve to support subclasses

– Such superclasses are called abstract classes (never have objects instantiated from
them)

A PayrollLedger Hierarchy

MiniQuiz

Define a new class ConsultantCheck that extends from PayrollCheck for consultants
who receive a check based on a one-time payment

Consultant Check UML Diagram

MiniQuiz (Page 1)

A single data field payment of type double stores the value of the one-time payment

The no-argument constructor passes values for checkNumber, employeeID and
payment to the overloaded constructor

The ConsultantCheck Class (Page 1)

public class ConsultantCheck extends PayrollCheck

{

private double payment;

public ConsultantCheck()

{

// Implicit call to superclass Payrol

this(0, 0, 0.0);

}

The ConsultantCheck Class (Image page 1)

MiniQuiz (Page 2)

The int, int, double constructor passes:

– checkNumber and employeeID to the superclass constructor

– payment to the set method

The ConsultantCheck Class (Page 2)

public ConsultantCheck(int checkNumber,

int employeeID,

double payment)

{

// Explicit call to superclass PayrollChe

super(checkNumber, employeeID);

setPayment(payment);

}

The ConsultantCheck Class (Image page 2)

MiniQuiz (Page 3)

The set method assigns the parameter to the payment data field if that parameter is
zero (0) or greater

– Value zero (0) indicates that the payment field is empty

The ConsultantCheck Class (Page 3)

public void setPayment(double payment)

{

if (payment >= 0)

{

this.payment = payment;

}

}

The ConsultantCheck Class (Image page 3)

MiniQuiz (Page 4)

The get method returns the value of the payment data field

The getGrossPay() method returns the value of the getPayment() method

The ConsultantCheck Class (Page 4)

public double getPayment()

{

return payment;

}

public double getGrossPay()

{

return getPayment();

}

}

The ConsultantCheck Class (Image page 4)

MiniQuiz (Page 5)

The toString() method returns:

– A formatted String representation of the grossPay data field formatted to dollars
and cents including text labels

– Preceded by the checkNumber and employeeID data fields from a call to toString()
method of superclass PayrollCheck

The ConsultantCheck Class (Page 5)

public String toString()

{

return super.toString()

+ "\nPayment: "

+ dollarsCents.format(

getGrossPay());

}

}

The ConsultantCheck Class (Image page 5)

Driver1.java (Page 2)

The Class Object (Page 1)

The superclass of all classes (either direct or indirect) is Object from the Java API …

– If a class definition does not explicitly extend another class, it extends Object
directly

The following two class headers effectively are identical:

public class PayrollCheck {

public class PayrollCheck extends Object

{

The Class Object (Page 2)

As a result all classes inherit eleven (11) public methods from Object including:

– toString(), equals() and hashCode()

Additionally classes from the Java API use inheritance extensively and extend also
from class Object (directly or indirectly)

A PayrollLedger Hierarchy

PayrollCheck.java (Page 1)

The toString() Method of Class Object

Method toString() is a member of class Object that returns a String representation of
an object

All classes inherit the toString() method either directly or indirectly from Object

– May be called or overridden

Returns the class name of which the object is an instance and a hash code (start
address where the object is stored in memory in hexadecimal), e.g.

– HourlySalaryCheck@15037e5

PayrollCheck.java (Object.toString() —Page 5)

Advantages of Inheritance (so far)

Avoiding code duplication

Code reuse

Easier maintenance

Extendibility

Subtyping (Page 1)

Types defined by a subclass definition actually are subtypes of their superclass

If HourlySalaryCheck and AnnualSalaryCheck classes are extensions of class
PayrollCheck:

– The superclass object:

PayrollCheck pay;

– Can be instantiated by calling its subtype constructor:

pay = new AnnualSalaryCheck();

– Or in a single statement:

PayrollCheck pay = new AnnualSalaryCheck();

Subtyping (Page 2)

Now the subtyped object can differentiate between getGrossPay() methods of
HourlySalaryCheck and AnnualSalaryCheck classes when called:

JOptionPane.showMessageDialog(null, pay.getGrossPay());

– This is an example of polymorphism (meaning “many shapes” or “many forms”)

– In this case the method behavior changes based upon which constructor was used
to instantiate it

Driver2.java (Page 1)

Driver2.java (Page 2)

The ArrayList Class (Page 1)

Used to create a list of items in a flexible-sized collection

The capacity of an ArrayList object is initialized to start at ten (10) elements but
grows as items are added to it

The ArrayList Class (Page 2)

The class has a whole series of methods of its own which can be used to
automatically manipulate objects instantiated from it

Found in the java.util package of the Java API library:

import java.util.ArrayList;

The ArrayList Class (Page 3)

Format to declare an ArrayList object:

ArrayList<type> objectName;

Example:

private ArrayList<String> departmentList;

– ArrayList is a generic class requiring a subtype specified as a parameter

– Enclosed in <chevrons>, e.g. <angle brackets>

– The example data field above departmentList is called an “ArrayList of Strings”

Instantiating ArrayList Objects (Page 1)

Similar syntax to that which is used when instantiating objects …

– Includes the second type parameter enclosed in <chevrons>

Format:

objectName = new ArrayList<type>();

Example:

departmentList = new ArrayList<String>();

Instantiating ArrayList Objects (Page 2)

Format to declare and instantiate the object in a single statement:

ArrayList<type> objectName = new ArrayList<type>();

Example:

ArrayList<String> departmentList = new ArrayList<String>();

The add() Method for ArrayList

Appends this element (object) to the end of the ArrayList collection

Format:

arrayListObject.add(object);

– The object represents the value added as a new element to the ArrayList collection

Example:

departmentList.add("COMPUTER");

The size() Method for ArrayList

Returns an int which is the number of elements in the ArrayList collection

Format:

arrayListObject.size()

Example:

JOptionPane.showMessageDialog(null, departmentList.size());

The get() Method for ArrayList

Retrieves an individual element from the specified position in ArrayList collection

Format:

arrayListObject.get(index)

– The index is an int between zero (0) and one less than the number of items in the
ArrayList

Example:

JOptionPane.showMessageDialog(null, departmentList.get(index));

– The element is not removed from the collection

The indexOf() Method for ArrayList (Page 1)

Searches for first occurrence of the object argument in the ArrayList collection—tests
for an equal to (==) condition

The method returns either :

– An int which is the index representing its position in the ArrayList collection

– Or -1 if the search criteria value is not found

The indexOf() Method for ArrayList (Page 2)

Format:

arrayListObject.indexOf(object)

Example:

index = departmentList.indexOf("COMPUTER");

The remove() Method for ArrayList (Page 1)

Deletes an individual element from the specified position in ArrayList collection

All elements after the deleted item move up one element to fill the gap

The remove() Method for ArrayList (Page 2)

Format:

arrayListObject.remove(index);

The index is an integer between zero (0) and one less than the number of elements
in the ArrayList

Example:

departmentList.remove(index);

MiniQuiz No. 2 (Page 1)

Open the “college” project and create a new class Alum that extends from
CommunityMember

There are two data fields:

– gradYear—the year the alumnus or alumna graduated

– degree—the degree granted to the alumnus or alumna

An ArrayList of Strings stores valid degrees including “B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”

Alum.java (Page 1)

MiniQuiz No. 2 (Page 2)

The constructor:

– Takes two Strings for firstName and lastName, an int for gradYear and a String for
degree

– Passes firstName and lastName to the superclass constructor

– Instantiates the ArrayList and assigns the values (“B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”)

– Calls the set methods for gradYear and degree

Alum.java (Page 2)

MiniQuiz No. 2 (Page 3)

The set method for gradYear updates the data field if the parameter is between 1960
and 2013, or is zero (0) meaning is not set

The set method for degree updates the data field if the parameter is in the degrees
ArrayList

Include get methods for gradYear and degree

The toString() method links to the toString() of CommunityMember and includes
labels before the return values of the two get methods

Alum.java (Page 3)

Alum.java (Page 4)

Alum.java (Page 5)

Alum.java (Page 6)

1

2

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

Objected-Oriented and Inheritance

CST141

OOP

Object-Oriented Programming is characterized by three features:

– Encapsulation

– Inheritance

•New classes created from (extends) existing classes by absorbing (inheriting)
their attributes/properties (instance variables) and behaviors (methods)

– Polymorphism

•The ability of an object to take on many forms; a common use occurs in OOP
when a parent class reference is used to refer to a child class object

AnnualSalaryCheck and HourlySalaryCheck Classes without Inheritance

AnnualSalaryCheck

- checkNumber

- employeeID

- annualSalary

+ setCheckNumber()

+ setEmployeeID()

+ setAnnualSalary()

+ getCheckNumber()

+ getEmployeeID()

+ getAnnualSalary()

+ getGrossPay()

HourlySalaryCheck

- checkNumber

- employeeID

- hoursWorked

- payRate

+ setCheckNumber()

+ setEmployeeID()

+ setHoursWorked()

+ setPayRate()

+ getCheckNumber()

+ getEmployeeID()

+ getHoursWorked()

+ getPayRate()

+ getGrossPay()

Code Duplication without Inheritance

Classes that operate on similar entities often have many identical elements

– Makes maintenance difficult/more work

– Introduces danger of bugs through incorrect maintenance

Code duplication also can carry over introducing problems to the driver classes

Inheritance

When a new class is created, it inherits the instance variables and methods of any
previously defined superclass

This subclass gets its initial features from the direct superclass

An indirect superclass is inherited from two or more levels above in a class hierarchy

The Subclass

The subclass is usually larger than its superclass …

– Because it adds instance variables and methods of its own to those of the
superclass

– Also it is possible to define additions to, or replacements for, inherited superclass
features

It is more specific than the superclass …

– Therefore it has a smaller number of situations in which it can be used

The Superclass

Each superclass exists at the top of a hierarchical relationship with its subclasses

A superclass may have several direct subclasses which inherit its features

A subclass to one superclass may be a superclass to other subclasses

A Payroll Hierarchy

A College Inheritance Hierarchy

“Has a …” vs. “Is a …”

These two phrases that express the nature of relationships and class attributes
between superclasses and subclasses in inheritance:

– A class to its own attributes (“has a”)

– A subclass to the superclass from which it inherits additional attributes (“is a”)

“Has a …” Relationships

“Has a” relationship expresses the attributes (instance variables) within the class
(called composition)

A class “has a(n)” attribute, i.e.

– HourlySalaryCheck “has an” HoursWorked, “has a” Pay Rate

– CommunityMember “has a” First Name, “has a” Last Name, “has an” Address, etc.

“Is a …” Relationships

“Is a” relationship expresses inheritance

Subclass “is a” superclass, i.e.

– AnnualSalaryCheck “is a” PayrollCheck

•And has all the attributes of a PayrollCheck, i.e. if PayrollCheck “has a” Check
Number attribute, AnnualSalaryCheck does also

– Teacher “is a” Faculty

•And has all the attributes of a Faculty member, i.e. if Faculty “has a” Rank
attribute, Teacher does also

Class Libraries (Page 1)

New classes inherit features from an organization's own class library

When developing a new class:

– First try to find a place for it in the existing inheritance hierarchy

– Only if it does not fit into the current class library structure should it be the
beginning of a new inheritance hierarchy segment

Class Libraries (Page 2)

Java API uses inheritance to build its vast library collection of classes

A Payroll Hierarchy

PayrollCheck, AnnualSalaryCheck and HourlySalaryCheck Classes with
Inheritance

AnnualSalaryCheck

annualSalary

setAnnualSalary()

getAnnualSalary()

getGrossPay()

HourlySalaryCheck

hoursWorked

payRate

setHoursWorked()

setPayRate()

getHoursWorked()

getPayRate()

getGrossPay()

PayrollCheck.java (Page 1)

PayrollCheck.java (Page 2)

PayrollCheck.java (Page 3)

PayrollCheck.java (Page 4)

PayrollCheck.java (Page 5)

A PayrollLedger Hierarchy

The Keyword extends (Page 1)

Declares that this class is a direct subclass of the superclass that is named following
the keyword extends

The class inherits all public and protected members (instance variables and methods)
of the superclass

A class may extend (inherit) directly only from one class (its direct superclass)

The Keyword extends (Page 2)

Format:

public class SubClassName extends DirectSuperClassName {

Examples:

public class HourlySalaryCheck extends PayrollCheck {

public class Faculty extends Employee {

Superclass Constructor Call (Page 1)

Subclass constructors always must contain a call to “super” (to its direct superclass
constructor method), or ...

If none is written, the compiler inserts one (an implicit call without parameters)

– Works only if superclass has a constructor without parameters

Superclass Constructor Call (Page 2)

Must be the first statement in the body of the subclass constructor

Example:

public AnnualSalaryCheck(int checkNumber, int employeeID, double annualSalary)

{

super(checkNumber, employeeID);

setAnnualSalary(annualSalary);

}

Calling Superclass Methods

The public members of a superclass are callable from the subclass

Format:

[super.]superclassMethod(parameters)

– Keyword super is not required (and is not standard usage) unless overriding
superclass methods

Examples:

super.toString()

super.getEmployeeID;

getEmployeeID;

Method Overriding (Page 1)

To modify the implementation of an inherited method in a subclass

Example:

public String toString()

{

return super.toString()

+ "\nHours worked: " + getHoursWorked()

+ "\nPay rate: " + getPayRate()

+ "\nGross pay: " + getGrossPay();

}

Method Overriding (Page 2)

Superclass method must be public (accessible)

– A private superclass method cannot be overridden

Methods that are static can be inherited but not overridden

– To access a “hidden” (because a method of the same name exists in the subclass)
static method in a superclass, use the class name, e.g.

SuperclassName.staticMethodName()

The @Override Annotation

Placing @Override before a subclass method denotes that the method must override
the method in the superclass

Format:

@Overrides

public type subclassMethodName()

{ …

Example:

@Overrides

public String toString()

{ …

HourlySalaryCheck.java(Page 1)

HourlySalaryCheck.java(Page 2)

HourlySalaryCheck.java(Page 3)

HourlySalaryCheck.java(Page 4)

Instantiate an HourlyPayrollCheck object

The DecimalFormat Class (Page 1)

Class used to create objects used to format numbers for output

Stored in the java.text package

import java.text.DecimalFormat;

Format:

DecimalFormat objectName = new DecimalFormat("formatString");

– formatString argument is a String of characters that specify how numbers will be
formatted

The DecimalFormat Class (Page 2)

Example 1:

DecimalFormat commaFormat = new DecimalFormat("#,##0");

The String argument "#,##0" specifies that the number will display:

– With commas at the thousands, millions, etc.

•Only if number is 1000 or greater; otherwise printing of leading zeros and
commas are from the 10’s position to the left are suppressed

– Rounded to the nearest integer

The DecimalFormat Class (Page 3)

Example 2:

DecimalFormat twoDecimals = new DecimalFormat("0.00");

The String argument "0.00" specifies that the number will display:

– At least one digit to the left of the decimal point

– Exactly two digits (rounded) to the right of the decimal point

The DecimalFormat Class (Page 4)

The functionality of Examples 1 and 2 can be combined to add commas to the two
decimals rounded:

DecimalFormat grossPayFormat = new DecimalFormat("#,##0.00");

A floating dollar sign could be inserted prior to the rest of the format string:

DecimalFormat grossPayFormat = new DecimalFormat("$#,##0.00");

The format Method

Formats a numeric value according to the DecimalFormat object's format string

Takes one variable/value (either float or double) as its single argument

Format:

decimalFormatObject.format(float/double);

Example:

JOptionPane.showMessageDialog(null, grossPayFormat.format(grossPay));

Driver1.java (Version 2) (Page 1)

Driver1.java (Version 2) (Page 2)

A PayrollLedger Hierarchy

AnnualSalaryCheck.java (Page 1)

AnnualSalaryCheck.java (Page 2)

AnnualSalaryCheck.java (Page 3)

AnnualSalaryCheck.java (Page 4)

AnnualSalaryCheck.java (Page 5)

AnnualSalaryCheck.java (Page 6)

Driver1.java (Page 2)

Extendible Classes (Page 1)

Software is extendible when it can be easily updated and reused to do something that
the original author never imagined

Extendibility is enhanced by:

– Loose coupling—few connections

– Class cohesion —classes with one single, well defined entity

– Responsibility-driven design in which classes are responsible for manipulating their
own data

Extendible Classes (Page 2)

When developing a new class, look to find a place where it can extend another class
in the existing inheritance hierarchy

Sometime superclasses in an inheritance hierarchy only serve to support subclasses

– Such superclasses are called abstract classes (never have objects instantiated from
them)

A PayrollLedger Hierarchy

MiniQuiz

Define a new class ConsultantCheck that extends from PayrollCheck for consultants
who receive a check based on a one-time payment

Consultant Check UML Diagram

MiniQuiz (Page 1)

A single data field payment of type double stores the value of the one-time payment

The no-argument constructor passes values for checkNumber, employeeID and
payment to the overloaded constructor

The ConsultantCheck Class (Page 1)

public class ConsultantCheck extends PayrollCheck

{

private double payment;

public ConsultantCheck()

{

// Implicit call to superclass Payrol

this(0, 0, 0.0);

}

The ConsultantCheck Class (Image page 1)

MiniQuiz (Page 2)

The int, int, double constructor passes:

– checkNumber and employeeID to the superclass constructor

– payment to the set method

The ConsultantCheck Class (Page 2)

public ConsultantCheck(int checkNumber,

int employeeID,

double payment)

{

// Explicit call to superclass PayrollChe

super(checkNumber, employeeID);

setPayment(payment);

}

The ConsultantCheck Class (Image page 2)

MiniQuiz (Page 3)

The set method assigns the parameter to the payment data field if that parameter is
zero (0) or greater

– Value zero (0) indicates that the payment field is empty

The ConsultantCheck Class (Page 3)

public void setPayment(double payment)

{

if (payment >= 0)

{

this.payment = payment;

}

}

The ConsultantCheck Class (Image page 3)

MiniQuiz (Page 4)

The get method returns the value of the payment data field

The getGrossPay() method returns the value of the getPayment() method

The ConsultantCheck Class (Page 4)

public double getPayment()

{

return payment;

}

public double getGrossPay()

{

return getPayment();

}

}

The ConsultantCheck Class (Image page 4)

MiniQuiz (Page 5)

The toString() method returns:

– A formatted String representation of the grossPay data field formatted to dollars
and cents including text labels

– Preceded by the checkNumber and employeeID data fields from a call to toString()
method of superclass PayrollCheck

The ConsultantCheck Class (Page 5)

public String toString()

{

return super.toString()

+ "\nPayment: "

+ dollarsCents.format(

getGrossPay());

}

}

The ConsultantCheck Class (Image page 5)

Driver1.java (Page 2)

The Class Object (Page 1)

The superclass of all classes (either direct or indirect) is Object from the Java API …

– If a class definition does not explicitly extend another class, it extends Object
directly

The following two class headers effectively are identical:

public class PayrollCheck {

public class PayrollCheck extends Object

{

The Class Object (Page 2)

As a result all classes inherit eleven (11) public methods from Object including:

– toString(), equals() and hashCode()

Additionally classes from the Java API use inheritance extensively and extend also
from class Object (directly or indirectly)

A PayrollLedger Hierarchy

PayrollCheck.java (Page 1)

The toString() Method of Class Object

Method toString() is a member of class Object that returns a String representation of
an object

All classes inherit the toString() method either directly or indirectly from Object

– May be called or overridden

Returns the class name of which the object is an instance and a hash code (start
address where the object is stored in memory in hexadecimal), e.g.

– HourlySalaryCheck@15037e5

PayrollCheck.java (Object.toString() —Page 5)

Advantages of Inheritance (so far)

Avoiding code duplication

Code reuse

Easier maintenance

Extendibility

Subtyping (Page 1)

Types defined by a subclass definition actually are subtypes of their superclass

If HourlySalaryCheck and AnnualSalaryCheck classes are extensions of class
PayrollCheck:

– The superclass object:

PayrollCheck pay;

– Can be instantiated by calling its subtype constructor:

pay = new AnnualSalaryCheck();

– Or in a single statement:

PayrollCheck pay = new AnnualSalaryCheck();

Subtyping (Page 2)

Now the subtyped object can differentiate between getGrossPay() methods of
HourlySalaryCheck and AnnualSalaryCheck classes when called:

JOptionPane.showMessageDialog(null, pay.getGrossPay());

– This is an example of polymorphism (meaning “many shapes” or “many forms”)

– In this case the method behavior changes based upon which constructor was used
to instantiate it

Driver2.java (Page 1)

Driver2.java (Page 2)

The ArrayList Class (Page 1)

Used to create a list of items in a flexible-sized collection

The capacity of an ArrayList object is initialized to start at ten (10) elements but
grows as items are added to it

The ArrayList Class (Page 2)

The class has a whole series of methods of its own which can be used to
automatically manipulate objects instantiated from it

Found in the java.util package of the Java API library:

import java.util.ArrayList;

The ArrayList Class (Page 3)

Format to declare an ArrayList object:

ArrayList<type> objectName;

Example:

private ArrayList<String> departmentList;

– ArrayList is a generic class requiring a subtype specified as a parameter

– Enclosed in <chevrons>, e.g. <angle brackets>

– The example data field above departmentList is called an “ArrayList of Strings”

Instantiating ArrayList Objects (Page 1)

Similar syntax to that which is used when instantiating objects …

– Includes the second type parameter enclosed in <chevrons>

Format:

objectName = new ArrayList<type>();

Example:

departmentList = new ArrayList<String>();

Instantiating ArrayList Objects (Page 2)

Format to declare and instantiate the object in a single statement:

ArrayList<type> objectName = new ArrayList<type>();

Example:

ArrayList<String> departmentList = new ArrayList<String>();

The add() Method for ArrayList

Appends this element (object) to the end of the ArrayList collection

Format:

arrayListObject.add(object);

– The object represents the value added as a new element to the ArrayList collection

Example:

departmentList.add("COMPUTER");

The size() Method for ArrayList

Returns an int which is the number of elements in the ArrayList collection

Format:

arrayListObject.size()

Example:

JOptionPane.showMessageDialog(null, departmentList.size());

The get() Method for ArrayList

Retrieves an individual element from the specified position in ArrayList collection

Format:

arrayListObject.get(index)

– The index is an int between zero (0) and one less than the number of items in the
ArrayList

Example:

JOptionPane.showMessageDialog(null, departmentList.get(index));

– The element is not removed from the collection

The indexOf() Method for ArrayList (Page 1)

Searches for first occurrence of the object argument in the ArrayList collection—tests
for an equal to (==) condition

The method returns either :

– An int which is the index representing its position in the ArrayList collection

– Or -1 if the search criteria value is not found

The indexOf() Method for ArrayList (Page 2)

Format:

arrayListObject.indexOf(object)

Example:

index = departmentList.indexOf("COMPUTER");

The remove() Method for ArrayList (Page 1)

Deletes an individual element from the specified position in ArrayList collection

All elements after the deleted item move up one element to fill the gap

The remove() Method for ArrayList (Page 2)

Format:

arrayListObject.remove(index);

The index is an integer between zero (0) and one less than the number of elements
in the ArrayList

Example:

departmentList.remove(index);

MiniQuiz No. 2 (Page 1)

Open the “college” project and create a new class Alum that extends from
CommunityMember

There are two data fields:

– gradYear—the year the alumnus or alumna graduated

– degree—the degree granted to the alumnus or alumna

An ArrayList of Strings stores valid degrees including “B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”

Alum.java (Page 1)

MiniQuiz No. 2 (Page 2)

The constructor:

– Takes two Strings for firstName and lastName, an int for gradYear and a String for
degree

– Passes firstName and lastName to the superclass constructor

– Instantiates the ArrayList and assigns the values (“B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”)

– Calls the set methods for gradYear and degree

Alum.java (Page 2)

MiniQuiz No. 2 (Page 3)

The set method for gradYear updates the data field if the parameter is between 1960
and 2013, or is zero (0) meaning is not set

The set method for degree updates the data field if the parameter is in the degrees
ArrayList

Include get methods for gradYear and degree

The toString() method links to the toString() of CommunityMember and includes
labels before the return values of the two get methods

Alum.java (Page 3)

Alum.java (Page 4)

Alum.java (Page 5)

Alum.java (Page 6)

1

2

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

CST141--Inheritance Page 2

Objected-Oriented and Inheritance

CST141

OOP

Object-Oriented Programming is characterized by three features:

– Encapsulation

– Inheritance

•New classes created from (extends) existing classes by absorbing (inheriting)
their attributes/properties (instance variables) and behaviors (methods)

– Polymorphism

•The ability of an object to take on many forms; a common use occurs in OOP
when a parent class reference is used to refer to a child class object

AnnualSalaryCheck and HourlySalaryCheck Classes without Inheritance

AnnualSalaryCheck

- checkNumber

- employeeID

- annualSalary

+ setCheckNumber()

+ setEmployeeID()

+ setAnnualSalary()

+ getCheckNumber()

+ getEmployeeID()

+ getAnnualSalary()

+ getGrossPay()

HourlySalaryCheck

- checkNumber

- employeeID

- hoursWorked

- payRate

+ setCheckNumber()

+ setEmployeeID()

+ setHoursWorked()

+ setPayRate()

+ getCheckNumber()

+ getEmployeeID()

+ getHoursWorked()

+ getPayRate()

+ getGrossPay()

Code Duplication without Inheritance

Classes that operate on similar entities often have many identical elements

– Makes maintenance difficult/more work

– Introduces danger of bugs through incorrect maintenance

Code duplication also can carry over introducing problems to the driver classes

Inheritance

When a new class is created, it inherits the instance variables and methods of any
previously defined superclass

This subclass gets its initial features from the direct superclass

An indirect superclass is inherited from two or more levels above in a class hierarchy

The Subclass

The subclass is usually larger than its superclass …

– Because it adds instance variables and methods of its own to those of the
superclass

– Also it is possible to define additions to, or replacements for, inherited superclass
features

It is more specific than the superclass …

– Therefore it has a smaller number of situations in which it can be used

The Superclass

Each superclass exists at the top of a hierarchical relationship with its subclasses

A superclass may have several direct subclasses which inherit its features

A subclass to one superclass may be a superclass to other subclasses

A Payroll Hierarchy

A College Inheritance Hierarchy

“Has a …” vs. “Is a …”

These two phrases that express the nature of relationships and class attributes
between superclasses and subclasses in inheritance:

– A class to its own attributes (“has a”)

– A subclass to the superclass from which it inherits additional attributes (“is a”)

“Has a …” Relationships

“Has a” relationship expresses the attributes (instance variables) within the class
(called composition)

A class “has a(n)” attribute, i.e.

– HourlySalaryCheck “has an” HoursWorked, “has a” Pay Rate

– CommunityMember “has a” First Name, “has a” Last Name, “has an” Address, etc.

“Is a …” Relationships

“Is a” relationship expresses inheritance

Subclass “is a” superclass, i.e.

– AnnualSalaryCheck “is a” PayrollCheck

•And has all the attributes of a PayrollCheck, i.e. if PayrollCheck “has a” Check
Number attribute, AnnualSalaryCheck does also

– Teacher “is a” Faculty

•And has all the attributes of a Faculty member, i.e. if Faculty “has a” Rank
attribute, Teacher does also

Class Libraries (Page 1)

New classes inherit features from an organization's own class library

When developing a new class:

– First try to find a place for it in the existing inheritance hierarchy

– Only if it does not fit into the current class library structure should it be the
beginning of a new inheritance hierarchy segment

Class Libraries (Page 2)

Java API uses inheritance to build its vast library collection of classes

A Payroll Hierarchy

PayrollCheck, AnnualSalaryCheck and HourlySalaryCheck Classes with
Inheritance

AnnualSalaryCheck

annualSalary

setAnnualSalary()

getAnnualSalary()

getGrossPay()

HourlySalaryCheck

hoursWorked

payRate

setHoursWorked()

setPayRate()

getHoursWorked()

getPayRate()

getGrossPay()

PayrollCheck.java (Page 1)

PayrollCheck.java (Page 2)

PayrollCheck.java (Page 3)

PayrollCheck.java (Page 4)

PayrollCheck.java (Page 5)

A PayrollLedger Hierarchy

The Keyword extends (Page 1)

Declares that this class is a direct subclass of the superclass that is named following
the keyword extends

The class inherits all public and protected members (instance variables and methods)
of the superclass

A class may extend (inherit) directly only from one class (its direct superclass)

The Keyword extends (Page 2)

Format:

public class SubClassName extends DirectSuperClassName {

Examples:

public class HourlySalaryCheck extends PayrollCheck {

public class Faculty extends Employee {

Superclass Constructor Call (Page 1)

Subclass constructors always must contain a call to “super” (to its direct superclass
constructor method), or ...

If none is written, the compiler inserts one (an implicit call without parameters)

– Works only if superclass has a constructor without parameters

Superclass Constructor Call (Page 2)

Must be the first statement in the body of the subclass constructor

Example:

public AnnualSalaryCheck(int checkNumber, int employeeID, double annualSalary)

{

super(checkNumber, employeeID);

setAnnualSalary(annualSalary);

}

Calling Superclass Methods

The public members of a superclass are callable from the subclass

Format:

[super.]superclassMethod(parameters)

– Keyword super is not required (and is not standard usage) unless overriding
superclass methods

Examples:

super.toString()

super.getEmployeeID;

getEmployeeID;

Method Overriding (Page 1)

To modify the implementation of an inherited method in a subclass

Example:

public String toString()

{

return super.toString()

+ "\nHours worked: " + getHoursWorked()

+ "\nPay rate: " + getPayRate()

+ "\nGross pay: " + getGrossPay();

}

Method Overriding (Page 2)

Superclass method must be public (accessible)

– A private superclass method cannot be overridden

Methods that are static can be inherited but not overridden

– To access a “hidden” (because a method of the same name exists in the subclass)
static method in a superclass, use the class name, e.g.

SuperclassName.staticMethodName()

The @Override Annotation

Placing @Override before a subclass method denotes that the method must override
the method in the superclass

Format:

@Overrides

public type subclassMethodName()

{ …

Example:

@Overrides

public String toString()

{ …

HourlySalaryCheck.java(Page 1)

HourlySalaryCheck.java(Page 2)

HourlySalaryCheck.java(Page 3)

HourlySalaryCheck.java(Page 4)

Instantiate an HourlyPayrollCheck object

The DecimalFormat Class (Page 1)

Class used to create objects used to format numbers for output

Stored in the java.text package

import java.text.DecimalFormat;

Format:

DecimalFormat objectName = new DecimalFormat("formatString");

– formatString argument is a String of characters that specify how numbers will be
formatted

The DecimalFormat Class (Page 2)

Example 1:

DecimalFormat commaFormat = new DecimalFormat("#,##0");

The String argument "#,##0" specifies that the number will display:

– With commas at the thousands, millions, etc.

•Only if number is 1000 or greater; otherwise printing of leading zeros and
commas are from the 10’s position to the left are suppressed

– Rounded to the nearest integer

The DecimalFormat Class (Page 3)

Example 2:

DecimalFormat twoDecimals = new DecimalFormat("0.00");

The String argument "0.00" specifies that the number will display:

– At least one digit to the left of the decimal point

– Exactly two digits (rounded) to the right of the decimal point

The DecimalFormat Class (Page 4)

The functionality of Examples 1 and 2 can be combined to add commas to the two
decimals rounded:

DecimalFormat grossPayFormat = new DecimalFormat("#,##0.00");

A floating dollar sign could be inserted prior to the rest of the format string:

DecimalFormat grossPayFormat = new DecimalFormat("$#,##0.00");

The format Method

Formats a numeric value according to the DecimalFormat object's format string

Takes one variable/value (either float or double) as its single argument

Format:

decimalFormatObject.format(float/double);

Example:

JOptionPane.showMessageDialog(null, grossPayFormat.format(grossPay));

Driver1.java (Version 2) (Page 1)

Driver1.java (Version 2) (Page 2)

A PayrollLedger Hierarchy

AnnualSalaryCheck.java (Page 1)

AnnualSalaryCheck.java (Page 2)

AnnualSalaryCheck.java (Page 3)

AnnualSalaryCheck.java (Page 4)

AnnualSalaryCheck.java (Page 5)

AnnualSalaryCheck.java (Page 6)

Driver1.java (Page 2)

Extendible Classes (Page 1)

Software is extendible when it can be easily updated and reused to do something that
the original author never imagined

Extendibility is enhanced by:

– Loose coupling—few connections

– Class cohesion —classes with one single, well defined entity

– Responsibility-driven design in which classes are responsible for manipulating their
own data

Extendible Classes (Page 2)

When developing a new class, look to find a place where it can extend another class
in the existing inheritance hierarchy

Sometime superclasses in an inheritance hierarchy only serve to support subclasses

– Such superclasses are called abstract classes (never have objects instantiated from
them)

A PayrollLedger Hierarchy

MiniQuiz

Define a new class ConsultantCheck that extends from PayrollCheck for consultants
who receive a check based on a one-time payment

Consultant Check UML Diagram

MiniQuiz (Page 1)

A single data field payment of type double stores the value of the one-time payment

The no-argument constructor passes values for checkNumber, employeeID and
payment to the overloaded constructor

The ConsultantCheck Class (Page 1)

public class ConsultantCheck extends PayrollCheck

{

private double payment;

public ConsultantCheck()

{

// Implicit call to superclass Payrol

this(0, 0, 0.0);

}

The ConsultantCheck Class (Image page 1)

MiniQuiz (Page 2)

The int, int, double constructor passes:

– checkNumber and employeeID to the superclass constructor

– payment to the set method

The ConsultantCheck Class (Page 2)

public ConsultantCheck(int checkNumber,

int employeeID,

double payment)

{

// Explicit call to superclass PayrollChe

super(checkNumber, employeeID);

setPayment(payment);

}

The ConsultantCheck Class (Image page 2)

MiniQuiz (Page 3)

The set method assigns the parameter to the payment data field if that parameter is
zero (0) or greater

– Value zero (0) indicates that the payment field is empty

The ConsultantCheck Class (Page 3)

public void setPayment(double payment)

{

if (payment >= 0)

{

this.payment = payment;

}

}

The ConsultantCheck Class (Image page 3)

MiniQuiz (Page 4)

The get method returns the value of the payment data field

The getGrossPay() method returns the value of the getPayment() method

The ConsultantCheck Class (Page 4)

public double getPayment()

{

return payment;

}

public double getGrossPay()

{

return getPayment();

}

}

The ConsultantCheck Class (Image page 4)

MiniQuiz (Page 5)

The toString() method returns:

– A formatted String representation of the grossPay data field formatted to dollars
and cents including text labels

– Preceded by the checkNumber and employeeID data fields from a call to toString()
method of superclass PayrollCheck

The ConsultantCheck Class (Page 5)

public String toString()

{

return super.toString()

+ "\nPayment: "

+ dollarsCents.format(

getGrossPay());

}

}

The ConsultantCheck Class (Image page 5)

Driver1.java (Page 2)

The Class Object (Page 1)

The superclass of all classes (either direct or indirect) is Object from the Java API …

– If a class definition does not explicitly extend another class, it extends Object
directly

The following two class headers effectively are identical:

public class PayrollCheck {

public class PayrollCheck extends Object

{

The Class Object (Page 2)

As a result all classes inherit eleven (11) public methods from Object including:

– toString(), equals() and hashCode()

Additionally classes from the Java API use inheritance extensively and extend also
from class Object (directly or indirectly)

A PayrollLedger Hierarchy

PayrollCheck.java (Page 1)

The toString() Method of Class Object

Method toString() is a member of class Object that returns a String representation of
an object

All classes inherit the toString() method either directly or indirectly from Object

– May be called or overridden

Returns the class name of which the object is an instance and a hash code (start
address where the object is stored in memory in hexadecimal), e.g.

– HourlySalaryCheck@15037e5

PayrollCheck.java (Object.toString() —Page 5)

Advantages of Inheritance (so far)

Avoiding code duplication

Code reuse

Easier maintenance

Extendibility

Subtyping (Page 1)

Types defined by a subclass definition actually are subtypes of their superclass

If HourlySalaryCheck and AnnualSalaryCheck classes are extensions of class
PayrollCheck:

– The superclass object:

PayrollCheck pay;

– Can be instantiated by calling its subtype constructor:

pay = new AnnualSalaryCheck();

– Or in a single statement:

PayrollCheck pay = new AnnualSalaryCheck();

Subtyping (Page 2)

Now the subtyped object can differentiate between getGrossPay() methods of
HourlySalaryCheck and AnnualSalaryCheck classes when called:

JOptionPane.showMessageDialog(null, pay.getGrossPay());

– This is an example of polymorphism (meaning “many shapes” or “many forms”)

– In this case the method behavior changes based upon which constructor was used
to instantiate it

Driver2.java (Page 1)

Driver2.java (Page 2)

The ArrayList Class (Page 1)

Used to create a list of items in a flexible-sized collection

The capacity of an ArrayList object is initialized to start at ten (10) elements but
grows as items are added to it

The ArrayList Class (Page 2)

The class has a whole series of methods of its own which can be used to
automatically manipulate objects instantiated from it

Found in the java.util package of the Java API library:

import java.util.ArrayList;

The ArrayList Class (Page 3)

Format to declare an ArrayList object:

ArrayList<type> objectName;

Example:

private ArrayList<String> departmentList;

– ArrayList is a generic class requiring a subtype specified as a parameter

– Enclosed in <chevrons>, e.g. <angle brackets>

– The example data field above departmentList is called an “ArrayList of Strings”

Instantiating ArrayList Objects (Page 1)

Similar syntax to that which is used when instantiating objects …

– Includes the second type parameter enclosed in <chevrons>

Format:

objectName = new ArrayList<type>();

Example:

departmentList = new ArrayList<String>();

Instantiating ArrayList Objects (Page 2)

Format to declare and instantiate the object in a single statement:

ArrayList<type> objectName = new ArrayList<type>();

Example:

ArrayList<String> departmentList = new ArrayList<String>();

The add() Method for ArrayList

Appends this element (object) to the end of the ArrayList collection

Format:

arrayListObject.add(object);

– The object represents the value added as a new element to the ArrayList collection

Example:

departmentList.add("COMPUTER");

The size() Method for ArrayList

Returns an int which is the number of elements in the ArrayList collection

Format:

arrayListObject.size()

Example:

JOptionPane.showMessageDialog(null, departmentList.size());

The get() Method for ArrayList

Retrieves an individual element from the specified position in ArrayList collection

Format:

arrayListObject.get(index)

– The index is an int between zero (0) and one less than the number of items in the
ArrayList

Example:

JOptionPane.showMessageDialog(null, departmentList.get(index));

– The element is not removed from the collection

The indexOf() Method for ArrayList (Page 1)

Searches for first occurrence of the object argument in the ArrayList collection—tests
for an equal to (==) condition

The method returns either :

– An int which is the index representing its position in the ArrayList collection

– Or -1 if the search criteria value is not found

The indexOf() Method for ArrayList (Page 2)

Format:

arrayListObject.indexOf(object)

Example:

index = departmentList.indexOf("COMPUTER");

The remove() Method for ArrayList (Page 1)

Deletes an individual element from the specified position in ArrayList collection

All elements after the deleted item move up one element to fill the gap

The remove() Method for ArrayList (Page 2)

Format:

arrayListObject.remove(index);

The index is an integer between zero (0) and one less than the number of elements
in the ArrayList

Example:

departmentList.remove(index);

MiniQuiz No. 2 (Page 1)

Open the “college” project and create a new class Alum that extends from
CommunityMember

There are two data fields:

– gradYear—the year the alumnus or alumna graduated

– degree—the degree granted to the alumnus or alumna

An ArrayList of Strings stores valid degrees including “B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”

Alum.java (Page 1)

MiniQuiz No. 2 (Page 2)

The constructor:

– Takes two Strings for firstName and lastName, an int for gradYear and a String for
degree

– Passes firstName and lastName to the superclass constructor

– Instantiates the ArrayList and assigns the values (“B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”)

– Calls the set methods for gradYear and degree

Alum.java (Page 2)

MiniQuiz No. 2 (Page 3)

The set method for gradYear updates the data field if the parameter is between 1960
and 2013, or is zero (0) meaning is not set

The set method for degree updates the data field if the parameter is in the degrees
ArrayList

Include get methods for gradYear and degree

The toString() method links to the toString() of CommunityMember and includes
labels before the return values of the two get methods

Alum.java (Page 3)

Alum.java (Page 4)

Alum.java (Page 5)

Alum.java (Page 6)

1

2

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

Objected-Oriented and Inheritance

CST141

OOP

Object-Oriented Programming is characterized by three features:

– Encapsulation

– Inheritance

•New classes created from (extends) existing classes by absorbing (inheriting)
their attributes/properties (instance variables) and behaviors (methods)

– Polymorphism

•The ability of an object to take on many forms; a common use occurs in OOP
when a parent class reference is used to refer to a child class object

AnnualSalaryCheck and HourlySalaryCheck Classes without Inheritance

AnnualSalaryCheck

- checkNumber

- employeeID

- annualSalary

+ setCheckNumber()

+ setEmployeeID()

+ setAnnualSalary()

+ getCheckNumber()

+ getEmployeeID()

+ getAnnualSalary()

+ getGrossPay()

HourlySalaryCheck

- checkNumber

- employeeID

- hoursWorked

- payRate

+ setCheckNumber()

+ setEmployeeID()

+ setHoursWorked()

+ setPayRate()

+ getCheckNumber()

+ getEmployeeID()

+ getHoursWorked()

+ getPayRate()

+ getGrossPay()

Code Duplication without Inheritance

Classes that operate on similar entities often have many identical elements

– Makes maintenance difficult/more work

– Introduces danger of bugs through incorrect maintenance

Code duplication also can carry over introducing problems to the driver classes

Inheritance

When a new class is created, it inherits the instance variables and methods of any
previously defined superclass

This subclass gets its initial features from the direct superclass

An indirect superclass is inherited from two or more levels above in a class hierarchy

The Subclass

The subclass is usually larger than its superclass …

– Because it adds instance variables and methods of its own to those of the
superclass

– Also it is possible to define additions to, or replacements for, inherited superclass
features

It is more specific than the superclass …

– Therefore it has a smaller number of situations in which it can be used

The Superclass

Each superclass exists at the top of a hierarchical relationship with its subclasses

A superclass may have several direct subclasses which inherit its features

A subclass to one superclass may be a superclass to other subclasses

A Payroll Hierarchy

A College Inheritance Hierarchy

“Has a …” vs. “Is a …”

These two phrases that express the nature of relationships and class attributes
between superclasses and subclasses in inheritance:

– A class to its own attributes (“has a”)

– A subclass to the superclass from which it inherits additional attributes (“is a”)

“Has a …” Relationships

“Has a” relationship expresses the attributes (instance variables) within the class
(called composition)

A class “has a(n)” attribute, i.e.

– HourlySalaryCheck “has an” HoursWorked, “has a” Pay Rate

– CommunityMember “has a” First Name, “has a” Last Name, “has an” Address, etc.

“Is a …” Relationships

“Is a” relationship expresses inheritance

Subclass “is a” superclass, i.e.

– AnnualSalaryCheck “is a” PayrollCheck

•And has all the attributes of a PayrollCheck, i.e. if PayrollCheck “has a” Check
Number attribute, AnnualSalaryCheck does also

– Teacher “is a” Faculty

•And has all the attributes of a Faculty member, i.e. if Faculty “has a” Rank
attribute, Teacher does also

Class Libraries (Page 1)

New classes inherit features from an organization's own class library

When developing a new class:

– First try to find a place for it in the existing inheritance hierarchy

– Only if it does not fit into the current class library structure should it be the
beginning of a new inheritance hierarchy segment

Class Libraries (Page 2)

Java API uses inheritance to build its vast library collection of classes

A Payroll Hierarchy

PayrollCheck, AnnualSalaryCheck and HourlySalaryCheck Classes with
Inheritance

AnnualSalaryCheck

annualSalary

setAnnualSalary()

getAnnualSalary()

getGrossPay()

HourlySalaryCheck

hoursWorked

payRate

setHoursWorked()

setPayRate()

getHoursWorked()

getPayRate()

getGrossPay()

PayrollCheck.java (Page 1)

PayrollCheck.java (Page 2)

PayrollCheck.java (Page 3)

PayrollCheck.java (Page 4)

PayrollCheck.java (Page 5)

A PayrollLedger Hierarchy

The Keyword extends (Page 1)

Declares that this class is a direct subclass of the superclass that is named following
the keyword extends

The class inherits all public and protected members (instance variables and methods)
of the superclass

A class may extend (inherit) directly only from one class (its direct superclass)

The Keyword extends (Page 2)

Format:

public class SubClassName extends DirectSuperClassName {

Examples:

public class HourlySalaryCheck extends PayrollCheck {

public class Faculty extends Employee {

Superclass Constructor Call (Page 1)

Subclass constructors always must contain a call to “super” (to its direct superclass
constructor method), or ...

If none is written, the compiler inserts one (an implicit call without parameters)

– Works only if superclass has a constructor without parameters

Superclass Constructor Call (Page 2)

Must be the first statement in the body of the subclass constructor

Example:

public AnnualSalaryCheck(int checkNumber, int employeeID, double annualSalary)

{

super(checkNumber, employeeID);

setAnnualSalary(annualSalary);

}

Calling Superclass Methods

The public members of a superclass are callable from the subclass

Format:

[super.]superclassMethod(parameters)

– Keyword super is not required (and is not standard usage) unless overriding
superclass methods

Examples:

super.toString()

super.getEmployeeID;

getEmployeeID;

Method Overriding (Page 1)

To modify the implementation of an inherited method in a subclass

Example:

public String toString()

{

return super.toString()

+ "\nHours worked: " + getHoursWorked()

+ "\nPay rate: " + getPayRate()

+ "\nGross pay: " + getGrossPay();

}

Method Overriding (Page 2)

Superclass method must be public (accessible)

– A private superclass method cannot be overridden

Methods that are static can be inherited but not overridden

– To access a “hidden” (because a method of the same name exists in the subclass)
static method in a superclass, use the class name, e.g.

SuperclassName.staticMethodName()

The @Override Annotation

Placing @Override before a subclass method denotes that the method must override
the method in the superclass

Format:

@Overrides

public type subclassMethodName()

{ …

Example:

@Overrides

public String toString()

{ …

HourlySalaryCheck.java(Page 1)

HourlySalaryCheck.java(Page 2)

HourlySalaryCheck.java(Page 3)

HourlySalaryCheck.java(Page 4)

Instantiate an HourlyPayrollCheck object

The DecimalFormat Class (Page 1)

Class used to create objects used to format numbers for output

Stored in the java.text package

import java.text.DecimalFormat;

Format:

DecimalFormat objectName = new DecimalFormat("formatString");

– formatString argument is a String of characters that specify how numbers will be
formatted

The DecimalFormat Class (Page 2)

Example 1:

DecimalFormat commaFormat = new DecimalFormat("#,##0");

The String argument "#,##0" specifies that the number will display:

– With commas at the thousands, millions, etc.

•Only if number is 1000 or greater; otherwise printing of leading zeros and
commas are from the 10’s position to the left are suppressed

– Rounded to the nearest integer

The DecimalFormat Class (Page 3)

Example 2:

DecimalFormat twoDecimals = new DecimalFormat("0.00");

The String argument "0.00" specifies that the number will display:

– At least one digit to the left of the decimal point

– Exactly two digits (rounded) to the right of the decimal point

The DecimalFormat Class (Page 4)

The functionality of Examples 1 and 2 can be combined to add commas to the two
decimals rounded:

DecimalFormat grossPayFormat = new DecimalFormat("#,##0.00");

A floating dollar sign could be inserted prior to the rest of the format string:

DecimalFormat grossPayFormat = new DecimalFormat("$#,##0.00");

The format Method

Formats a numeric value according to the DecimalFormat object's format string

Takes one variable/value (either float or double) as its single argument

Format:

decimalFormatObject.format(float/double);

Example:

JOptionPane.showMessageDialog(null, grossPayFormat.format(grossPay));

Driver1.java (Version 2) (Page 1)

Driver1.java (Version 2) (Page 2)

A PayrollLedger Hierarchy

AnnualSalaryCheck.java (Page 1)

AnnualSalaryCheck.java (Page 2)

AnnualSalaryCheck.java (Page 3)

AnnualSalaryCheck.java (Page 4)

AnnualSalaryCheck.java (Page 5)

AnnualSalaryCheck.java (Page 6)

Driver1.java (Page 2)

Extendible Classes (Page 1)

Software is extendible when it can be easily updated and reused to do something that
the original author never imagined

Extendibility is enhanced by:

– Loose coupling—few connections

– Class cohesion —classes with one single, well defined entity

– Responsibility-driven design in which classes are responsible for manipulating their
own data

Extendible Classes (Page 2)

When developing a new class, look to find a place where it can extend another class
in the existing inheritance hierarchy

Sometime superclasses in an inheritance hierarchy only serve to support subclasses

– Such superclasses are called abstract classes (never have objects instantiated from
them)

A PayrollLedger Hierarchy

MiniQuiz

Define a new class ConsultantCheck that extends from PayrollCheck for consultants
who receive a check based on a one-time payment

Consultant Check UML Diagram

MiniQuiz (Page 1)

A single data field payment of type double stores the value of the one-time payment

The no-argument constructor passes values for checkNumber, employeeID and
payment to the overloaded constructor

The ConsultantCheck Class (Page 1)

public class ConsultantCheck extends PayrollCheck

{

private double payment;

public ConsultantCheck()

{

// Implicit call to superclass Payrol

this(0, 0, 0.0);

}

The ConsultantCheck Class (Image page 1)

MiniQuiz (Page 2)

The int, int, double constructor passes:

– checkNumber and employeeID to the superclass constructor

– payment to the set method

The ConsultantCheck Class (Page 2)

public ConsultantCheck(int checkNumber,

int employeeID,

double payment)

{

// Explicit call to superclass PayrollChe

super(checkNumber, employeeID);

setPayment(payment);

}

The ConsultantCheck Class (Image page 2)

MiniQuiz (Page 3)

The set method assigns the parameter to the payment data field if that parameter is
zero (0) or greater

– Value zero (0) indicates that the payment field is empty

The ConsultantCheck Class (Page 3)

public void setPayment(double payment)

{

if (payment >= 0)

{

this.payment = payment;

}

}

The ConsultantCheck Class (Image page 3)

MiniQuiz (Page 4)

The get method returns the value of the payment data field

The getGrossPay() method returns the value of the getPayment() method

The ConsultantCheck Class (Page 4)

public double getPayment()

{

return payment;

}

public double getGrossPay()

{

return getPayment();

}

}

The ConsultantCheck Class (Image page 4)

MiniQuiz (Page 5)

The toString() method returns:

– A formatted String representation of the grossPay data field formatted to dollars
and cents including text labels

– Preceded by the checkNumber and employeeID data fields from a call to toString()
method of superclass PayrollCheck

The ConsultantCheck Class (Page 5)

public String toString()

{

return super.toString()

+ "\nPayment: "

+ dollarsCents.format(

getGrossPay());

}

}

The ConsultantCheck Class (Image page 5)

Driver1.java (Page 2)

The Class Object (Page 1)

The superclass of all classes (either direct or indirect) is Object from the Java API …

– If a class definition does not explicitly extend another class, it extends Object
directly

The following two class headers effectively are identical:

public class PayrollCheck {

public class PayrollCheck extends Object

{

The Class Object (Page 2)

As a result all classes inherit eleven (11) public methods from Object including:

– toString(), equals() and hashCode()

Additionally classes from the Java API use inheritance extensively and extend also
from class Object (directly or indirectly)

A PayrollLedger Hierarchy

PayrollCheck.java (Page 1)

The toString() Method of Class Object

Method toString() is a member of class Object that returns a String representation of
an object

All classes inherit the toString() method either directly or indirectly from Object

– May be called or overridden

Returns the class name of which the object is an instance and a hash code (start
address where the object is stored in memory in hexadecimal), e.g.

– HourlySalaryCheck@15037e5

PayrollCheck.java (Object.toString() —Page 5)

Advantages of Inheritance (so far)

Avoiding code duplication

Code reuse

Easier maintenance

Extendibility

Subtyping (Page 1)

Types defined by a subclass definition actually are subtypes of their superclass

If HourlySalaryCheck and AnnualSalaryCheck classes are extensions of class
PayrollCheck:

– The superclass object:

PayrollCheck pay;

– Can be instantiated by calling its subtype constructor:

pay = new AnnualSalaryCheck();

– Or in a single statement:

PayrollCheck pay = new AnnualSalaryCheck();

Subtyping (Page 2)

Now the subtyped object can differentiate between getGrossPay() methods of
HourlySalaryCheck and AnnualSalaryCheck classes when called:

JOptionPane.showMessageDialog(null, pay.getGrossPay());

– This is an example of polymorphism (meaning “many shapes” or “many forms”)

– In this case the method behavior changes based upon which constructor was used
to instantiate it

Driver2.java (Page 1)

Driver2.java (Page 2)

The ArrayList Class (Page 1)

Used to create a list of items in a flexible-sized collection

The capacity of an ArrayList object is initialized to start at ten (10) elements but
grows as items are added to it

The ArrayList Class (Page 2)

The class has a whole series of methods of its own which can be used to
automatically manipulate objects instantiated from it

Found in the java.util package of the Java API library:

import java.util.ArrayList;

The ArrayList Class (Page 3)

Format to declare an ArrayList object:

ArrayList<type> objectName;

Example:

private ArrayList<String> departmentList;

– ArrayList is a generic class requiring a subtype specified as a parameter

– Enclosed in <chevrons>, e.g. <angle brackets>

– The example data field above departmentList is called an “ArrayList of Strings”

Instantiating ArrayList Objects (Page 1)

Similar syntax to that which is used when instantiating objects …

– Includes the second type parameter enclosed in <chevrons>

Format:

objectName = new ArrayList<type>();

Example:

departmentList = new ArrayList<String>();

Instantiating ArrayList Objects (Page 2)

Format to declare and instantiate the object in a single statement:

ArrayList<type> objectName = new ArrayList<type>();

Example:

ArrayList<String> departmentList = new ArrayList<String>();

The add() Method for ArrayList

Appends this element (object) to the end of the ArrayList collection

Format:

arrayListObject.add(object);

– The object represents the value added as a new element to the ArrayList collection

Example:

departmentList.add("COMPUTER");

The size() Method for ArrayList

Returns an int which is the number of elements in the ArrayList collection

Format:

arrayListObject.size()

Example:

JOptionPane.showMessageDialog(null, departmentList.size());

The get() Method for ArrayList

Retrieves an individual element from the specified position in ArrayList collection

Format:

arrayListObject.get(index)

– The index is an int between zero (0) and one less than the number of items in the
ArrayList

Example:

JOptionPane.showMessageDialog(null, departmentList.get(index));

– The element is not removed from the collection

The indexOf() Method for ArrayList (Page 1)

Searches for first occurrence of the object argument in the ArrayList collection—tests
for an equal to (==) condition

The method returns either :

– An int which is the index representing its position in the ArrayList collection

– Or -1 if the search criteria value is not found

The indexOf() Method for ArrayList (Page 2)

Format:

arrayListObject.indexOf(object)

Example:

index = departmentList.indexOf("COMPUTER");

The remove() Method for ArrayList (Page 1)

Deletes an individual element from the specified position in ArrayList collection

All elements after the deleted item move up one element to fill the gap

The remove() Method for ArrayList (Page 2)

Format:

arrayListObject.remove(index);

The index is an integer between zero (0) and one less than the number of elements
in the ArrayList

Example:

departmentList.remove(index);

MiniQuiz No. 2 (Page 1)

Open the “college” project and create a new class Alum that extends from
CommunityMember

There are two data fields:

– gradYear—the year the alumnus or alumna graduated

– degree—the degree granted to the alumnus or alumna

An ArrayList of Strings stores valid degrees including “B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”

Alum.java (Page 1)

MiniQuiz No. 2 (Page 2)

The constructor:

– Takes two Strings for firstName and lastName, an int for gradYear and a String for
degree

– Passes firstName and lastName to the superclass constructor

– Instantiates the ArrayList and assigns the values (“B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”)

– Calls the set methods for gradYear and degree

Alum.java (Page 2)

MiniQuiz No. 2 (Page 3)

The set method for gradYear updates the data field if the parameter is between 1960
and 2013, or is zero (0) meaning is not set

The set method for degree updates the data field if the parameter is in the degrees
ArrayList

Include get methods for gradYear and degree

The toString() method links to the toString() of CommunityMember and includes
labels before the return values of the two get methods

Alum.java (Page 3)

Alum.java (Page 4)

Alum.java (Page 5)

Alum.java (Page 6)

1

2

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

CST141--Inheritance Page 3

Objected-Oriented and Inheritance

CST141

OOP

Object-Oriented Programming is characterized by three features:

– Encapsulation

– Inheritance

•New classes created from (extends) existing classes by absorbing (inheriting)
their attributes/properties (instance variables) and behaviors (methods)

– Polymorphism

•The ability of an object to take on many forms; a common use occurs in OOP
when a parent class reference is used to refer to a child class object

AnnualSalaryCheck and HourlySalaryCheck Classes without Inheritance

AnnualSalaryCheck

- checkNumber

- employeeID

- annualSalary

+ setCheckNumber()

+ setEmployeeID()

+ setAnnualSalary()

+ getCheckNumber()

+ getEmployeeID()

+ getAnnualSalary()

+ getGrossPay()

HourlySalaryCheck

- checkNumber

- employeeID

- hoursWorked

- payRate

+ setCheckNumber()

+ setEmployeeID()

+ setHoursWorked()

+ setPayRate()

+ getCheckNumber()

+ getEmployeeID()

+ getHoursWorked()

+ getPayRate()

+ getGrossPay()

Code Duplication without Inheritance

Classes that operate on similar entities often have many identical elements

– Makes maintenance difficult/more work

– Introduces danger of bugs through incorrect maintenance

Code duplication also can carry over introducing problems to the driver classes

Inheritance

When a new class is created, it inherits the instance variables and methods of any
previously defined superclass

This subclass gets its initial features from the direct superclass

An indirect superclass is inherited from two or more levels above in a class hierarchy

The Subclass

The subclass is usually larger than its superclass …

– Because it adds instance variables and methods of its own to those of the
superclass

– Also it is possible to define additions to, or replacements for, inherited superclass
features

It is more specific than the superclass …

– Therefore it has a smaller number of situations in which it can be used

The Superclass

Each superclass exists at the top of a hierarchical relationship with its subclasses

A superclass may have several direct subclasses which inherit its features

A subclass to one superclass may be a superclass to other subclasses

A Payroll Hierarchy

A College Inheritance Hierarchy

“Has a …” vs. “Is a …”

These two phrases that express the nature of relationships and class attributes
between superclasses and subclasses in inheritance:

– A class to its own attributes (“has a”)

– A subclass to the superclass from which it inherits additional attributes (“is a”)

“Has a …” Relationships

“Has a” relationship expresses the attributes (instance variables) within the class
(called composition)

A class “has a(n)” attribute, i.e.

– HourlySalaryCheck “has an” HoursWorked, “has a” Pay Rate

– CommunityMember “has a” First Name, “has a” Last Name, “has an” Address, etc.

“Is a …” Relationships

“Is a” relationship expresses inheritance

Subclass “is a” superclass, i.e.

– AnnualSalaryCheck “is a” PayrollCheck

•And has all the attributes of a PayrollCheck, i.e. if PayrollCheck “has a” Check
Number attribute, AnnualSalaryCheck does also

– Teacher “is a” Faculty

•And has all the attributes of a Faculty member, i.e. if Faculty “has a” Rank
attribute, Teacher does also

Class Libraries (Page 1)

New classes inherit features from an organization's own class library

When developing a new class:

– First try to find a place for it in the existing inheritance hierarchy

– Only if it does not fit into the current class library structure should it be the
beginning of a new inheritance hierarchy segment

Class Libraries (Page 2)

Java API uses inheritance to build its vast library collection of classes

A Payroll Hierarchy

PayrollCheck, AnnualSalaryCheck and HourlySalaryCheck Classes with
Inheritance

AnnualSalaryCheck

annualSalary

setAnnualSalary()

getAnnualSalary()

getGrossPay()

HourlySalaryCheck

hoursWorked

payRate

setHoursWorked()

setPayRate()

getHoursWorked()

getPayRate()

getGrossPay()

PayrollCheck.java (Page 1)

PayrollCheck.java (Page 2)

PayrollCheck.java (Page 3)

PayrollCheck.java (Page 4)

PayrollCheck.java (Page 5)

A PayrollLedger Hierarchy

The Keyword extends (Page 1)

Declares that this class is a direct subclass of the superclass that is named following
the keyword extends

The class inherits all public and protected members (instance variables and methods)
of the superclass

A class may extend (inherit) directly only from one class (its direct superclass)

The Keyword extends (Page 2)

Format:

public class SubClassName extends DirectSuperClassName {

Examples:

public class HourlySalaryCheck extends PayrollCheck {

public class Faculty extends Employee {

Superclass Constructor Call (Page 1)

Subclass constructors always must contain a call to “super” (to its direct superclass
constructor method), or ...

If none is written, the compiler inserts one (an implicit call without parameters)

– Works only if superclass has a constructor without parameters

Superclass Constructor Call (Page 2)

Must be the first statement in the body of the subclass constructor

Example:

public AnnualSalaryCheck(int checkNumber, int employeeID, double annualSalary)

{

super(checkNumber, employeeID);

setAnnualSalary(annualSalary);

}

Calling Superclass Methods

The public members of a superclass are callable from the subclass

Format:

[super.]superclassMethod(parameters)

– Keyword super is not required (and is not standard usage) unless overriding
superclass methods

Examples:

super.toString()

super.getEmployeeID;

getEmployeeID;

Method Overriding (Page 1)

To modify the implementation of an inherited method in a subclass

Example:

public String toString()

{

return super.toString()

+ "\nHours worked: " + getHoursWorked()

+ "\nPay rate: " + getPayRate()

+ "\nGross pay: " + getGrossPay();

}

Method Overriding (Page 2)

Superclass method must be public (accessible)

– A private superclass method cannot be overridden

Methods that are static can be inherited but not overridden

– To access a “hidden” (because a method of the same name exists in the subclass)
static method in a superclass, use the class name, e.g.

SuperclassName.staticMethodName()

The @Override Annotation

Placing @Override before a subclass method denotes that the method must override
the method in the superclass

Format:

@Overrides

public type subclassMethodName()

{ …

Example:

@Overrides

public String toString()

{ …

HourlySalaryCheck.java(Page 1)

HourlySalaryCheck.java(Page 2)

HourlySalaryCheck.java(Page 3)

HourlySalaryCheck.java(Page 4)

Instantiate an HourlyPayrollCheck object

The DecimalFormat Class (Page 1)

Class used to create objects used to format numbers for output

Stored in the java.text package

import java.text.DecimalFormat;

Format:

DecimalFormat objectName = new DecimalFormat("formatString");

– formatString argument is a String of characters that specify how numbers will be
formatted

The DecimalFormat Class (Page 2)

Example 1:

DecimalFormat commaFormat = new DecimalFormat("#,##0");

The String argument "#,##0" specifies that the number will display:

– With commas at the thousands, millions, etc.

•Only if number is 1000 or greater; otherwise printing of leading zeros and
commas are from the 10’s position to the left are suppressed

– Rounded to the nearest integer

The DecimalFormat Class (Page 3)

Example 2:

DecimalFormat twoDecimals = new DecimalFormat("0.00");

The String argument "0.00" specifies that the number will display:

– At least one digit to the left of the decimal point

– Exactly two digits (rounded) to the right of the decimal point

The DecimalFormat Class (Page 4)

The functionality of Examples 1 and 2 can be combined to add commas to the two
decimals rounded:

DecimalFormat grossPayFormat = new DecimalFormat("#,##0.00");

A floating dollar sign could be inserted prior to the rest of the format string:

DecimalFormat grossPayFormat = new DecimalFormat("$#,##0.00");

The format Method

Formats a numeric value according to the DecimalFormat object's format string

Takes one variable/value (either float or double) as its single argument

Format:

decimalFormatObject.format(float/double);

Example:

JOptionPane.showMessageDialog(null, grossPayFormat.format(grossPay));

Driver1.java (Version 2) (Page 1)

Driver1.java (Version 2) (Page 2)

A PayrollLedger Hierarchy

AnnualSalaryCheck.java (Page 1)

AnnualSalaryCheck.java (Page 2)

AnnualSalaryCheck.java (Page 3)

AnnualSalaryCheck.java (Page 4)

AnnualSalaryCheck.java (Page 5)

AnnualSalaryCheck.java (Page 6)

Driver1.java (Page 2)

Extendible Classes (Page 1)

Software is extendible when it can be easily updated and reused to do something that
the original author never imagined

Extendibility is enhanced by:

– Loose coupling—few connections

– Class cohesion —classes with one single, well defined entity

– Responsibility-driven design in which classes are responsible for manipulating their
own data

Extendible Classes (Page 2)

When developing a new class, look to find a place where it can extend another class
in the existing inheritance hierarchy

Sometime superclasses in an inheritance hierarchy only serve to support subclasses

– Such superclasses are called abstract classes (never have objects instantiated from
them)

A PayrollLedger Hierarchy

MiniQuiz

Define a new class ConsultantCheck that extends from PayrollCheck for consultants
who receive a check based on a one-time payment

Consultant Check UML Diagram

MiniQuiz (Page 1)

A single data field payment of type double stores the value of the one-time payment

The no-argument constructor passes values for checkNumber, employeeID and
payment to the overloaded constructor

The ConsultantCheck Class (Page 1)

public class ConsultantCheck extends PayrollCheck

{

private double payment;

public ConsultantCheck()

{

// Implicit call to superclass Payrol

this(0, 0, 0.0);

}

The ConsultantCheck Class (Image page 1)

MiniQuiz (Page 2)

The int, int, double constructor passes:

– checkNumber and employeeID to the superclass constructor

– payment to the set method

The ConsultantCheck Class (Page 2)

public ConsultantCheck(int checkNumber,

int employeeID,

double payment)

{

// Explicit call to superclass PayrollChe

super(checkNumber, employeeID);

setPayment(payment);

}

The ConsultantCheck Class (Image page 2)

MiniQuiz (Page 3)

The set method assigns the parameter to the payment data field if that parameter is
zero (0) or greater

– Value zero (0) indicates that the payment field is empty

The ConsultantCheck Class (Page 3)

public void setPayment(double payment)

{

if (payment >= 0)

{

this.payment = payment;

}

}

The ConsultantCheck Class (Image page 3)

MiniQuiz (Page 4)

The get method returns the value of the payment data field

The getGrossPay() method returns the value of the getPayment() method

The ConsultantCheck Class (Page 4)

public double getPayment()

{

return payment;

}

public double getGrossPay()

{

return getPayment();

}

}

The ConsultantCheck Class (Image page 4)

MiniQuiz (Page 5)

The toString() method returns:

– A formatted String representation of the grossPay data field formatted to dollars
and cents including text labels

– Preceded by the checkNumber and employeeID data fields from a call to toString()
method of superclass PayrollCheck

The ConsultantCheck Class (Page 5)

public String toString()

{

return super.toString()

+ "\nPayment: "

+ dollarsCents.format(

getGrossPay());

}

}

The ConsultantCheck Class (Image page 5)

Driver1.java (Page 2)

The Class Object (Page 1)

The superclass of all classes (either direct or indirect) is Object from the Java API …

– If a class definition does not explicitly extend another class, it extends Object
directly

The following two class headers effectively are identical:

public class PayrollCheck {

public class PayrollCheck extends Object

{

The Class Object (Page 2)

As a result all classes inherit eleven (11) public methods from Object including:

– toString(), equals() and hashCode()

Additionally classes from the Java API use inheritance extensively and extend also
from class Object (directly or indirectly)

A PayrollLedger Hierarchy

PayrollCheck.java (Page 1)

The toString() Method of Class Object

Method toString() is a member of class Object that returns a String representation of
an object

All classes inherit the toString() method either directly or indirectly from Object

– May be called or overridden

Returns the class name of which the object is an instance and a hash code (start
address where the object is stored in memory in hexadecimal), e.g.

– HourlySalaryCheck@15037e5

PayrollCheck.java (Object.toString() —Page 5)

Advantages of Inheritance (so far)

Avoiding code duplication

Code reuse

Easier maintenance

Extendibility

Subtyping (Page 1)

Types defined by a subclass definition actually are subtypes of their superclass

If HourlySalaryCheck and AnnualSalaryCheck classes are extensions of class
PayrollCheck:

– The superclass object:

PayrollCheck pay;

– Can be instantiated by calling its subtype constructor:

pay = new AnnualSalaryCheck();

– Or in a single statement:

PayrollCheck pay = new AnnualSalaryCheck();

Subtyping (Page 2)

Now the subtyped object can differentiate between getGrossPay() methods of
HourlySalaryCheck and AnnualSalaryCheck classes when called:

JOptionPane.showMessageDialog(null, pay.getGrossPay());

– This is an example of polymorphism (meaning “many shapes” or “many forms”)

– In this case the method behavior changes based upon which constructor was used
to instantiate it

Driver2.java (Page 1)

Driver2.java (Page 2)

The ArrayList Class (Page 1)

Used to create a list of items in a flexible-sized collection

The capacity of an ArrayList object is initialized to start at ten (10) elements but
grows as items are added to it

The ArrayList Class (Page 2)

The class has a whole series of methods of its own which can be used to
automatically manipulate objects instantiated from it

Found in the java.util package of the Java API library:

import java.util.ArrayList;

The ArrayList Class (Page 3)

Format to declare an ArrayList object:

ArrayList<type> objectName;

Example:

private ArrayList<String> departmentList;

– ArrayList is a generic class requiring a subtype specified as a parameter

– Enclosed in <chevrons>, e.g. <angle brackets>

– The example data field above departmentList is called an “ArrayList of Strings”

Instantiating ArrayList Objects (Page 1)

Similar syntax to that which is used when instantiating objects …

– Includes the second type parameter enclosed in <chevrons>

Format:

objectName = new ArrayList<type>();

Example:

departmentList = new ArrayList<String>();

Instantiating ArrayList Objects (Page 2)

Format to declare and instantiate the object in a single statement:

ArrayList<type> objectName = new ArrayList<type>();

Example:

ArrayList<String> departmentList = new ArrayList<String>();

The add() Method for ArrayList

Appends this element (object) to the end of the ArrayList collection

Format:

arrayListObject.add(object);

– The object represents the value added as a new element to the ArrayList collection

Example:

departmentList.add("COMPUTER");

The size() Method for ArrayList

Returns an int which is the number of elements in the ArrayList collection

Format:

arrayListObject.size()

Example:

JOptionPane.showMessageDialog(null, departmentList.size());

The get() Method for ArrayList

Retrieves an individual element from the specified position in ArrayList collection

Format:

arrayListObject.get(index)

– The index is an int between zero (0) and one less than the number of items in the
ArrayList

Example:

JOptionPane.showMessageDialog(null, departmentList.get(index));

– The element is not removed from the collection

The indexOf() Method for ArrayList (Page 1)

Searches for first occurrence of the object argument in the ArrayList collection—tests
for an equal to (==) condition

The method returns either :

– An int which is the index representing its position in the ArrayList collection

– Or -1 if the search criteria value is not found

The indexOf() Method for ArrayList (Page 2)

Format:

arrayListObject.indexOf(object)

Example:

index = departmentList.indexOf("COMPUTER");

The remove() Method for ArrayList (Page 1)

Deletes an individual element from the specified position in ArrayList collection

All elements after the deleted item move up one element to fill the gap

The remove() Method for ArrayList (Page 2)

Format:

arrayListObject.remove(index);

The index is an integer between zero (0) and one less than the number of elements
in the ArrayList

Example:

departmentList.remove(index);

MiniQuiz No. 2 (Page 1)

Open the “college” project and create a new class Alum that extends from
CommunityMember

There are two data fields:

– gradYear—the year the alumnus or alumna graduated

– degree—the degree granted to the alumnus or alumna

An ArrayList of Strings stores valid degrees including “B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”

Alum.java (Page 1)

MiniQuiz No. 2 (Page 2)

The constructor:

– Takes two Strings for firstName and lastName, an int for gradYear and a String for
degree

– Passes firstName and lastName to the superclass constructor

– Instantiates the ArrayList and assigns the values (“B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”)

– Calls the set methods for gradYear and degree

Alum.java (Page 2)

MiniQuiz No. 2 (Page 3)

The set method for gradYear updates the data field if the parameter is between 1960
and 2013, or is zero (0) meaning is not set

The set method for degree updates the data field if the parameter is in the degrees
ArrayList

Include get methods for gradYear and degree

The toString() method links to the toString() of CommunityMember and includes
labels before the return values of the two get methods

Alum.java (Page 3)

Alum.java (Page 4)

Alum.java (Page 5)

Alum.java (Page 6)

1

2

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

Objected-Oriented and Inheritance

CST141

OOP

Object-Oriented Programming is characterized by three features:

– Encapsulation

– Inheritance

•New classes created from (extends) existing classes by absorbing (inheriting)
their attributes/properties (instance variables) and behaviors (methods)

– Polymorphism

•The ability of an object to take on many forms; a common use occurs in OOP
when a parent class reference is used to refer to a child class object

AnnualSalaryCheck and HourlySalaryCheck Classes without Inheritance

AnnualSalaryCheck

- checkNumber

- employeeID

- annualSalary

+ setCheckNumber()

+ setEmployeeID()

+ setAnnualSalary()

+ getCheckNumber()

+ getEmployeeID()

+ getAnnualSalary()

+ getGrossPay()

HourlySalaryCheck

- checkNumber

- employeeID

- hoursWorked

- payRate

+ setCheckNumber()

+ setEmployeeID()

+ setHoursWorked()

+ setPayRate()

+ getCheckNumber()

+ getEmployeeID()

+ getHoursWorked()

+ getPayRate()

+ getGrossPay()

Code Duplication without Inheritance

Classes that operate on similar entities often have many identical elements

– Makes maintenance difficult/more work

– Introduces danger of bugs through incorrect maintenance

Code duplication also can carry over introducing problems to the driver classes

Inheritance

When a new class is created, it inherits the instance variables and methods of any
previously defined superclass

This subclass gets its initial features from the direct superclass

An indirect superclass is inherited from two or more levels above in a class hierarchy

The Subclass

The subclass is usually larger than its superclass …

– Because it adds instance variables and methods of its own to those of the
superclass

– Also it is possible to define additions to, or replacements for, inherited superclass
features

It is more specific than the superclass …

– Therefore it has a smaller number of situations in which it can be used

The Superclass

Each superclass exists at the top of a hierarchical relationship with its subclasses

A superclass may have several direct subclasses which inherit its features

A subclass to one superclass may be a superclass to other subclasses

A Payroll Hierarchy

A College Inheritance Hierarchy

“Has a …” vs. “Is a …”

These two phrases that express the nature of relationships and class attributes
between superclasses and subclasses in inheritance:

– A class to its own attributes (“has a”)

– A subclass to the superclass from which it inherits additional attributes (“is a”)

“Has a …” Relationships

“Has a” relationship expresses the attributes (instance variables) within the class
(called composition)

A class “has a(n)” attribute, i.e.

– HourlySalaryCheck “has an” HoursWorked, “has a” Pay Rate

– CommunityMember “has a” First Name, “has a” Last Name, “has an” Address, etc.

“Is a …” Relationships

“Is a” relationship expresses inheritance

Subclass “is a” superclass, i.e.

– AnnualSalaryCheck “is a” PayrollCheck

•And has all the attributes of a PayrollCheck, i.e. if PayrollCheck “has a” Check
Number attribute, AnnualSalaryCheck does also

– Teacher “is a” Faculty

•And has all the attributes of a Faculty member, i.e. if Faculty “has a” Rank
attribute, Teacher does also

Class Libraries (Page 1)

New classes inherit features from an organization's own class library

When developing a new class:

– First try to find a place for it in the existing inheritance hierarchy

– Only if it does not fit into the current class library structure should it be the
beginning of a new inheritance hierarchy segment

Class Libraries (Page 2)

Java API uses inheritance to build its vast library collection of classes

A Payroll Hierarchy

PayrollCheck, AnnualSalaryCheck and HourlySalaryCheck Classes with
Inheritance

AnnualSalaryCheck

annualSalary

setAnnualSalary()

getAnnualSalary()

getGrossPay()

HourlySalaryCheck

hoursWorked

payRate

setHoursWorked()

setPayRate()

getHoursWorked()

getPayRate()

getGrossPay()

PayrollCheck.java (Page 1)

PayrollCheck.java (Page 2)

PayrollCheck.java (Page 3)

PayrollCheck.java (Page 4)

PayrollCheck.java (Page 5)

A PayrollLedger Hierarchy

The Keyword extends (Page 1)

Declares that this class is a direct subclass of the superclass that is named following
the keyword extends

The class inherits all public and protected members (instance variables and methods)
of the superclass

A class may extend (inherit) directly only from one class (its direct superclass)

The Keyword extends (Page 2)

Format:

public class SubClassName extends DirectSuperClassName {

Examples:

public class HourlySalaryCheck extends PayrollCheck {

public class Faculty extends Employee {

Superclass Constructor Call (Page 1)

Subclass constructors always must contain a call to “super” (to its direct superclass
constructor method), or ...

If none is written, the compiler inserts one (an implicit call without parameters)

– Works only if superclass has a constructor without parameters

Superclass Constructor Call (Page 2)

Must be the first statement in the body of the subclass constructor

Example:

public AnnualSalaryCheck(int checkNumber, int employeeID, double annualSalary)

{

super(checkNumber, employeeID);

setAnnualSalary(annualSalary);

}

Calling Superclass Methods

The public members of a superclass are callable from the subclass

Format:

[super.]superclassMethod(parameters)

– Keyword super is not required (and is not standard usage) unless overriding
superclass methods

Examples:

super.toString()

super.getEmployeeID;

getEmployeeID;

Method Overriding (Page 1)

To modify the implementation of an inherited method in a subclass

Example:

public String toString()

{

return super.toString()

+ "\nHours worked: " + getHoursWorked()

+ "\nPay rate: " + getPayRate()

+ "\nGross pay: " + getGrossPay();

}

Method Overriding (Page 2)

Superclass method must be public (accessible)

– A private superclass method cannot be overridden

Methods that are static can be inherited but not overridden

– To access a “hidden” (because a method of the same name exists in the subclass)
static method in a superclass, use the class name, e.g.

SuperclassName.staticMethodName()

The @Override Annotation

Placing @Override before a subclass method denotes that the method must override
the method in the superclass

Format:

@Overrides

public type subclassMethodName()

{ …

Example:

@Overrides

public String toString()

{ …

HourlySalaryCheck.java(Page 1)

HourlySalaryCheck.java(Page 2)

HourlySalaryCheck.java(Page 3)

HourlySalaryCheck.java(Page 4)

Instantiate an HourlyPayrollCheck object

The DecimalFormat Class (Page 1)

Class used to create objects used to format numbers for output

Stored in the java.text package

import java.text.DecimalFormat;

Format:

DecimalFormat objectName = new DecimalFormat("formatString");

– formatString argument is a String of characters that specify how numbers will be
formatted

The DecimalFormat Class (Page 2)

Example 1:

DecimalFormat commaFormat = new DecimalFormat("#,##0");

The String argument "#,##0" specifies that the number will display:

– With commas at the thousands, millions, etc.

•Only if number is 1000 or greater; otherwise printing of leading zeros and
commas are from the 10’s position to the left are suppressed

– Rounded to the nearest integer

The DecimalFormat Class (Page 3)

Example 2:

DecimalFormat twoDecimals = new DecimalFormat("0.00");

The String argument "0.00" specifies that the number will display:

– At least one digit to the left of the decimal point

– Exactly two digits (rounded) to the right of the decimal point

The DecimalFormat Class (Page 4)

The functionality of Examples 1 and 2 can be combined to add commas to the two
decimals rounded:

DecimalFormat grossPayFormat = new DecimalFormat("#,##0.00");

A floating dollar sign could be inserted prior to the rest of the format string:

DecimalFormat grossPayFormat = new DecimalFormat("$#,##0.00");

The format Method

Formats a numeric value according to the DecimalFormat object's format string

Takes one variable/value (either float or double) as its single argument

Format:

decimalFormatObject.format(float/double);

Example:

JOptionPane.showMessageDialog(null, grossPayFormat.format(grossPay));

Driver1.java (Version 2) (Page 1)

Driver1.java (Version 2) (Page 2)

A PayrollLedger Hierarchy

AnnualSalaryCheck.java (Page 1)

AnnualSalaryCheck.java (Page 2)

AnnualSalaryCheck.java (Page 3)

AnnualSalaryCheck.java (Page 4)

AnnualSalaryCheck.java (Page 5)

AnnualSalaryCheck.java (Page 6)

Driver1.java (Page 2)

Extendible Classes (Page 1)

Software is extendible when it can be easily updated and reused to do something that
the original author never imagined

Extendibility is enhanced by:

– Loose coupling—few connections

– Class cohesion —classes with one single, well defined entity

– Responsibility-driven design in which classes are responsible for manipulating their
own data

Extendible Classes (Page 2)

When developing a new class, look to find a place where it can extend another class
in the existing inheritance hierarchy

Sometime superclasses in an inheritance hierarchy only serve to support subclasses

– Such superclasses are called abstract classes (never have objects instantiated from
them)

A PayrollLedger Hierarchy

MiniQuiz

Define a new class ConsultantCheck that extends from PayrollCheck for consultants
who receive a check based on a one-time payment

Consultant Check UML Diagram

MiniQuiz (Page 1)

A single data field payment of type double stores the value of the one-time payment

The no-argument constructor passes values for checkNumber, employeeID and
payment to the overloaded constructor

The ConsultantCheck Class (Page 1)

public class ConsultantCheck extends PayrollCheck

{

private double payment;

public ConsultantCheck()

{

// Implicit call to superclass Payrol

this(0, 0, 0.0);

}

The ConsultantCheck Class (Image page 1)

MiniQuiz (Page 2)

The int, int, double constructor passes:

– checkNumber and employeeID to the superclass constructor

– payment to the set method

The ConsultantCheck Class (Page 2)

public ConsultantCheck(int checkNumber,

int employeeID,

double payment)

{

// Explicit call to superclass PayrollChe

super(checkNumber, employeeID);

setPayment(payment);

}

The ConsultantCheck Class (Image page 2)

MiniQuiz (Page 3)

The set method assigns the parameter to the payment data field if that parameter is
zero (0) or greater

– Value zero (0) indicates that the payment field is empty

The ConsultantCheck Class (Page 3)

public void setPayment(double payment)

{

if (payment >= 0)

{

this.payment = payment;

}

}

The ConsultantCheck Class (Image page 3)

MiniQuiz (Page 4)

The get method returns the value of the payment data field

The getGrossPay() method returns the value of the getPayment() method

The ConsultantCheck Class (Page 4)

public double getPayment()

{

return payment;

}

public double getGrossPay()

{

return getPayment();

}

}

The ConsultantCheck Class (Image page 4)

MiniQuiz (Page 5)

The toString() method returns:

– A formatted String representation of the grossPay data field formatted to dollars
and cents including text labels

– Preceded by the checkNumber and employeeID data fields from a call to toString()
method of superclass PayrollCheck

The ConsultantCheck Class (Page 5)

public String toString()

{

return super.toString()

+ "\nPayment: "

+ dollarsCents.format(

getGrossPay());

}

}

The ConsultantCheck Class (Image page 5)

Driver1.java (Page 2)

The Class Object (Page 1)

The superclass of all classes (either direct or indirect) is Object from the Java API …

– If a class definition does not explicitly extend another class, it extends Object
directly

The following two class headers effectively are identical:

public class PayrollCheck {

public class PayrollCheck extends Object

{

The Class Object (Page 2)

As a result all classes inherit eleven (11) public methods from Object including:

– toString(), equals() and hashCode()

Additionally classes from the Java API use inheritance extensively and extend also
from class Object (directly or indirectly)

A PayrollLedger Hierarchy

PayrollCheck.java (Page 1)

The toString() Method of Class Object

Method toString() is a member of class Object that returns a String representation of
an object

All classes inherit the toString() method either directly or indirectly from Object

– May be called or overridden

Returns the class name of which the object is an instance and a hash code (start
address where the object is stored in memory in hexadecimal), e.g.

– HourlySalaryCheck@15037e5

PayrollCheck.java (Object.toString() —Page 5)

Advantages of Inheritance (so far)

Avoiding code duplication

Code reuse

Easier maintenance

Extendibility

Subtyping (Page 1)

Types defined by a subclass definition actually are subtypes of their superclass

If HourlySalaryCheck and AnnualSalaryCheck classes are extensions of class
PayrollCheck:

– The superclass object:

PayrollCheck pay;

– Can be instantiated by calling its subtype constructor:

pay = new AnnualSalaryCheck();

– Or in a single statement:

PayrollCheck pay = new AnnualSalaryCheck();

Subtyping (Page 2)

Now the subtyped object can differentiate between getGrossPay() methods of
HourlySalaryCheck and AnnualSalaryCheck classes when called:

JOptionPane.showMessageDialog(null, pay.getGrossPay());

– This is an example of polymorphism (meaning “many shapes” or “many forms”)

– In this case the method behavior changes based upon which constructor was used
to instantiate it

Driver2.java (Page 1)

Driver2.java (Page 2)

The ArrayList Class (Page 1)

Used to create a list of items in a flexible-sized collection

The capacity of an ArrayList object is initialized to start at ten (10) elements but
grows as items are added to it

The ArrayList Class (Page 2)

The class has a whole series of methods of its own which can be used to
automatically manipulate objects instantiated from it

Found in the java.util package of the Java API library:

import java.util.ArrayList;

The ArrayList Class (Page 3)

Format to declare an ArrayList object:

ArrayList<type> objectName;

Example:

private ArrayList<String> departmentList;

– ArrayList is a generic class requiring a subtype specified as a parameter

– Enclosed in <chevrons>, e.g. <angle brackets>

– The example data field above departmentList is called an “ArrayList of Strings”

Instantiating ArrayList Objects (Page 1)

Similar syntax to that which is used when instantiating objects …

– Includes the second type parameter enclosed in <chevrons>

Format:

objectName = new ArrayList<type>();

Example:

departmentList = new ArrayList<String>();

Instantiating ArrayList Objects (Page 2)

Format to declare and instantiate the object in a single statement:

ArrayList<type> objectName = new ArrayList<type>();

Example:

ArrayList<String> departmentList = new ArrayList<String>();

The add() Method for ArrayList

Appends this element (object) to the end of the ArrayList collection

Format:

arrayListObject.add(object);

– The object represents the value added as a new element to the ArrayList collection

Example:

departmentList.add("COMPUTER");

The size() Method for ArrayList

Returns an int which is the number of elements in the ArrayList collection

Format:

arrayListObject.size()

Example:

JOptionPane.showMessageDialog(null, departmentList.size());

The get() Method for ArrayList

Retrieves an individual element from the specified position in ArrayList collection

Format:

arrayListObject.get(index)

– The index is an int between zero (0) and one less than the number of items in the
ArrayList

Example:

JOptionPane.showMessageDialog(null, departmentList.get(index));

– The element is not removed from the collection

The indexOf() Method for ArrayList (Page 1)

Searches for first occurrence of the object argument in the ArrayList collection—tests
for an equal to (==) condition

The method returns either :

– An int which is the index representing its position in the ArrayList collection

– Or -1 if the search criteria value is not found

The indexOf() Method for ArrayList (Page 2)

Format:

arrayListObject.indexOf(object)

Example:

index = departmentList.indexOf("COMPUTER");

The remove() Method for ArrayList (Page 1)

Deletes an individual element from the specified position in ArrayList collection

All elements after the deleted item move up one element to fill the gap

The remove() Method for ArrayList (Page 2)

Format:

arrayListObject.remove(index);

The index is an integer between zero (0) and one less than the number of elements
in the ArrayList

Example:

departmentList.remove(index);

MiniQuiz No. 2 (Page 1)

Open the “college” project and create a new class Alum that extends from
CommunityMember

There are two data fields:

– gradYear—the year the alumnus or alumna graduated

– degree—the degree granted to the alumnus or alumna

An ArrayList of Strings stores valid degrees including “B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”

Alum.java (Page 1)

MiniQuiz No. 2 (Page 2)

The constructor:

– Takes two Strings for firstName and lastName, an int for gradYear and a String for
degree

– Passes firstName and lastName to the superclass constructor

– Instantiates the ArrayList and assigns the values (“B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”)

– Calls the set methods for gradYear and degree

Alum.java (Page 2)

MiniQuiz No. 2 (Page 3)

The set method for gradYear updates the data field if the parameter is between 1960
and 2013, or is zero (0) meaning is not set

The set method for degree updates the data field if the parameter is in the degrees
ArrayList

Include get methods for gradYear and degree

The toString() method links to the toString() of CommunityMember and includes
labels before the return values of the two get methods

Alum.java (Page 3)

Alum.java (Page 4)

Alum.java (Page 5)

Alum.java (Page 6)

1

2

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

CST141--Inheritance Page 4

Objected-Oriented and Inheritance

CST141

OOP

Object-Oriented Programming is characterized by three features:

– Encapsulation

– Inheritance

•New classes created from (extends) existing classes by absorbing (inheriting)
their attributes/properties (instance variables) and behaviors (methods)

– Polymorphism

•The ability of an object to take on many forms; a common use occurs in OOP
when a parent class reference is used to refer to a child class object

AnnualSalaryCheck and HourlySalaryCheck Classes without Inheritance

AnnualSalaryCheck

- checkNumber

- employeeID

- annualSalary

+ setCheckNumber()

+ setEmployeeID()

+ setAnnualSalary()

+ getCheckNumber()

+ getEmployeeID()

+ getAnnualSalary()

+ getGrossPay()

HourlySalaryCheck

- checkNumber

- employeeID

- hoursWorked

- payRate

+ setCheckNumber()

+ setEmployeeID()

+ setHoursWorked()

+ setPayRate()

+ getCheckNumber()

+ getEmployeeID()

+ getHoursWorked()

+ getPayRate()

+ getGrossPay()

Code Duplication without Inheritance

Classes that operate on similar entities often have many identical elements

– Makes maintenance difficult/more work

– Introduces danger of bugs through incorrect maintenance

Code duplication also can carry over introducing problems to the driver classes

Inheritance

When a new class is created, it inherits the instance variables and methods of any
previously defined superclass

This subclass gets its initial features from the direct superclass

An indirect superclass is inherited from two or more levels above in a class hierarchy

The Subclass

The subclass is usually larger than its superclass …

– Because it adds instance variables and methods of its own to those of the
superclass

– Also it is possible to define additions to, or replacements for, inherited superclass
features

It is more specific than the superclass …

– Therefore it has a smaller number of situations in which it can be used

The Superclass

Each superclass exists at the top of a hierarchical relationship with its subclasses

A superclass may have several direct subclasses which inherit its features

A subclass to one superclass may be a superclass to other subclasses

A Payroll Hierarchy

A College Inheritance Hierarchy

“Has a …” vs. “Is a …”

These two phrases that express the nature of relationships and class attributes
between superclasses and subclasses in inheritance:

– A class to its own attributes (“has a”)

– A subclass to the superclass from which it inherits additional attributes (“is a”)

“Has a …” Relationships

“Has a” relationship expresses the attributes (instance variables) within the class
(called composition)

A class “has a(n)” attribute, i.e.

– HourlySalaryCheck “has an” HoursWorked, “has a” Pay Rate

– CommunityMember “has a” First Name, “has a” Last Name, “has an” Address, etc.

“Is a …” Relationships

“Is a” relationship expresses inheritance

Subclass “is a” superclass, i.e.

– AnnualSalaryCheck “is a” PayrollCheck

•And has all the attributes of a PayrollCheck, i.e. if PayrollCheck “has a” Check
Number attribute, AnnualSalaryCheck does also

– Teacher “is a” Faculty

•And has all the attributes of a Faculty member, i.e. if Faculty “has a” Rank
attribute, Teacher does also

Class Libraries (Page 1)

New classes inherit features from an organization's own class library

When developing a new class:

– First try to find a place for it in the existing inheritance hierarchy

– Only if it does not fit into the current class library structure should it be the
beginning of a new inheritance hierarchy segment

Class Libraries (Page 2)

Java API uses inheritance to build its vast library collection of classes

A Payroll Hierarchy

PayrollCheck, AnnualSalaryCheck and HourlySalaryCheck Classes with
Inheritance

AnnualSalaryCheck

annualSalary

setAnnualSalary()

getAnnualSalary()

getGrossPay()

HourlySalaryCheck

hoursWorked

payRate

setHoursWorked()

setPayRate()

getHoursWorked()

getPayRate()

getGrossPay()

PayrollCheck.java (Page 1)

PayrollCheck.java (Page 2)

PayrollCheck.java (Page 3)

PayrollCheck.java (Page 4)

PayrollCheck.java (Page 5)

A PayrollLedger Hierarchy

The Keyword extends (Page 1)

Declares that this class is a direct subclass of the superclass that is named following
the keyword extends

The class inherits all public and protected members (instance variables and methods)
of the superclass

A class may extend (inherit) directly only from one class (its direct superclass)

The Keyword extends (Page 2)

Format:

public class SubClassName extends DirectSuperClassName {

Examples:

public class HourlySalaryCheck extends PayrollCheck {

public class Faculty extends Employee {

Superclass Constructor Call (Page 1)

Subclass constructors always must contain a call to “super” (to its direct superclass
constructor method), or ...

If none is written, the compiler inserts one (an implicit call without parameters)

– Works only if superclass has a constructor without parameters

Superclass Constructor Call (Page 2)

Must be the first statement in the body of the subclass constructor

Example:

public AnnualSalaryCheck(int checkNumber, int employeeID, double annualSalary)

{

super(checkNumber, employeeID);

setAnnualSalary(annualSalary);

}

Calling Superclass Methods

The public members of a superclass are callable from the subclass

Format:

[super.]superclassMethod(parameters)

– Keyword super is not required (and is not standard usage) unless overriding
superclass methods

Examples:

super.toString()

super.getEmployeeID;

getEmployeeID;

Method Overriding (Page 1)

To modify the implementation of an inherited method in a subclass

Example:

public String toString()

{

return super.toString()

+ "\nHours worked: " + getHoursWorked()

+ "\nPay rate: " + getPayRate()

+ "\nGross pay: " + getGrossPay();

}

Method Overriding (Page 2)

Superclass method must be public (accessible)

– A private superclass method cannot be overridden

Methods that are static can be inherited but not overridden

– To access a “hidden” (because a method of the same name exists in the subclass)
static method in a superclass, use the class name, e.g.

SuperclassName.staticMethodName()

The @Override Annotation

Placing @Override before a subclass method denotes that the method must override
the method in the superclass

Format:

@Overrides

public type subclassMethodName()

{ …

Example:

@Overrides

public String toString()

{ …

HourlySalaryCheck.java(Page 1)

HourlySalaryCheck.java(Page 2)

HourlySalaryCheck.java(Page 3)

HourlySalaryCheck.java(Page 4)

Instantiate an HourlyPayrollCheck object

The DecimalFormat Class (Page 1)

Class used to create objects used to format numbers for output

Stored in the java.text package

import java.text.DecimalFormat;

Format:

DecimalFormat objectName = new DecimalFormat("formatString");

– formatString argument is a String of characters that specify how numbers will be
formatted

The DecimalFormat Class (Page 2)

Example 1:

DecimalFormat commaFormat = new DecimalFormat("#,##0");

The String argument "#,##0" specifies that the number will display:

– With commas at the thousands, millions, etc.

•Only if number is 1000 or greater; otherwise printing of leading zeros and
commas are from the 10’s position to the left are suppressed

– Rounded to the nearest integer

The DecimalFormat Class (Page 3)

Example 2:

DecimalFormat twoDecimals = new DecimalFormat("0.00");

The String argument "0.00" specifies that the number will display:

– At least one digit to the left of the decimal point

– Exactly two digits (rounded) to the right of the decimal point

The DecimalFormat Class (Page 4)

The functionality of Examples 1 and 2 can be combined to add commas to the two
decimals rounded:

DecimalFormat grossPayFormat = new DecimalFormat("#,##0.00");

A floating dollar sign could be inserted prior to the rest of the format string:

DecimalFormat grossPayFormat = new DecimalFormat("$#,##0.00");

The format Method

Formats a numeric value according to the DecimalFormat object's format string

Takes one variable/value (either float or double) as its single argument

Format:

decimalFormatObject.format(float/double);

Example:

JOptionPane.showMessageDialog(null, grossPayFormat.format(grossPay));

Driver1.java (Version 2) (Page 1)

Driver1.java (Version 2) (Page 2)

A PayrollLedger Hierarchy

AnnualSalaryCheck.java (Page 1)

AnnualSalaryCheck.java (Page 2)

AnnualSalaryCheck.java (Page 3)

AnnualSalaryCheck.java (Page 4)

AnnualSalaryCheck.java (Page 5)

AnnualSalaryCheck.java (Page 6)

Driver1.java (Page 2)

Extendible Classes (Page 1)

Software is extendible when it can be easily updated and reused to do something that
the original author never imagined

Extendibility is enhanced by:

– Loose coupling—few connections

– Class cohesion —classes with one single, well defined entity

– Responsibility-driven design in which classes are responsible for manipulating their
own data

Extendible Classes (Page 2)

When developing a new class, look to find a place where it can extend another class
in the existing inheritance hierarchy

Sometime superclasses in an inheritance hierarchy only serve to support subclasses

– Such superclasses are called abstract classes (never have objects instantiated from
them)

A PayrollLedger Hierarchy

MiniQuiz

Define a new class ConsultantCheck that extends from PayrollCheck for consultants
who receive a check based on a one-time payment

Consultant Check UML Diagram

MiniQuiz (Page 1)

A single data field payment of type double stores the value of the one-time payment

The no-argument constructor passes values for checkNumber, employeeID and
payment to the overloaded constructor

The ConsultantCheck Class (Page 1)

public class ConsultantCheck extends PayrollCheck

{

private double payment;

public ConsultantCheck()

{

// Implicit call to superclass Payrol

this(0, 0, 0.0);

}

The ConsultantCheck Class (Image page 1)

MiniQuiz (Page 2)

The int, int, double constructor passes:

– checkNumber and employeeID to the superclass constructor

– payment to the set method

The ConsultantCheck Class (Page 2)

public ConsultantCheck(int checkNumber,

int employeeID,

double payment)

{

// Explicit call to superclass PayrollChe

super(checkNumber, employeeID);

setPayment(payment);

}

The ConsultantCheck Class (Image page 2)

MiniQuiz (Page 3)

The set method assigns the parameter to the payment data field if that parameter is
zero (0) or greater

– Value zero (0) indicates that the payment field is empty

The ConsultantCheck Class (Page 3)

public void setPayment(double payment)

{

if (payment >= 0)

{

this.payment = payment;

}

}

The ConsultantCheck Class (Image page 3)

MiniQuiz (Page 4)

The get method returns the value of the payment data field

The getGrossPay() method returns the value of the getPayment() method

The ConsultantCheck Class (Page 4)

public double getPayment()

{

return payment;

}

public double getGrossPay()

{

return getPayment();

}

}

The ConsultantCheck Class (Image page 4)

MiniQuiz (Page 5)

The toString() method returns:

– A formatted String representation of the grossPay data field formatted to dollars
and cents including text labels

– Preceded by the checkNumber and employeeID data fields from a call to toString()
method of superclass PayrollCheck

The ConsultantCheck Class (Page 5)

public String toString()

{

return super.toString()

+ "\nPayment: "

+ dollarsCents.format(

getGrossPay());

}

}

The ConsultantCheck Class (Image page 5)

Driver1.java (Page 2)

The Class Object (Page 1)

The superclass of all classes (either direct or indirect) is Object from the Java API …

– If a class definition does not explicitly extend another class, it extends Object
directly

The following two class headers effectively are identical:

public class PayrollCheck {

public class PayrollCheck extends Object

{

The Class Object (Page 2)

As a result all classes inherit eleven (11) public methods from Object including:

– toString(), equals() and hashCode()

Additionally classes from the Java API use inheritance extensively and extend also
from class Object (directly or indirectly)

A PayrollLedger Hierarchy

PayrollCheck.java (Page 1)

The toString() Method of Class Object

Method toString() is a member of class Object that returns a String representation of
an object

All classes inherit the toString() method either directly or indirectly from Object

– May be called or overridden

Returns the class name of which the object is an instance and a hash code (start
address where the object is stored in memory in hexadecimal), e.g.

– HourlySalaryCheck@15037e5

PayrollCheck.java (Object.toString() —Page 5)

Advantages of Inheritance (so far)

Avoiding code duplication

Code reuse

Easier maintenance

Extendibility

Subtyping (Page 1)

Types defined by a subclass definition actually are subtypes of their superclass

If HourlySalaryCheck and AnnualSalaryCheck classes are extensions of class
PayrollCheck:

– The superclass object:

PayrollCheck pay;

– Can be instantiated by calling its subtype constructor:

pay = new AnnualSalaryCheck();

– Or in a single statement:

PayrollCheck pay = new AnnualSalaryCheck();

Subtyping (Page 2)

Now the subtyped object can differentiate between getGrossPay() methods of
HourlySalaryCheck and AnnualSalaryCheck classes when called:

JOptionPane.showMessageDialog(null, pay.getGrossPay());

– This is an example of polymorphism (meaning “many shapes” or “many forms”)

– In this case the method behavior changes based upon which constructor was used
to instantiate it

Driver2.java (Page 1)

Driver2.java (Page 2)

The ArrayList Class (Page 1)

Used to create a list of items in a flexible-sized collection

The capacity of an ArrayList object is initialized to start at ten (10) elements but
grows as items are added to it

The ArrayList Class (Page 2)

The class has a whole series of methods of its own which can be used to
automatically manipulate objects instantiated from it

Found in the java.util package of the Java API library:

import java.util.ArrayList;

The ArrayList Class (Page 3)

Format to declare an ArrayList object:

ArrayList<type> objectName;

Example:

private ArrayList<String> departmentList;

– ArrayList is a generic class requiring a subtype specified as a parameter

– Enclosed in <chevrons>, e.g. <angle brackets>

– The example data field above departmentList is called an “ArrayList of Strings”

Instantiating ArrayList Objects (Page 1)

Similar syntax to that which is used when instantiating objects …

– Includes the second type parameter enclosed in <chevrons>

Format:

objectName = new ArrayList<type>();

Example:

departmentList = new ArrayList<String>();

Instantiating ArrayList Objects (Page 2)

Format to declare and instantiate the object in a single statement:

ArrayList<type> objectName = new ArrayList<type>();

Example:

ArrayList<String> departmentList = new ArrayList<String>();

The add() Method for ArrayList

Appends this element (object) to the end of the ArrayList collection

Format:

arrayListObject.add(object);

– The object represents the value added as a new element to the ArrayList collection

Example:

departmentList.add("COMPUTER");

The size() Method for ArrayList

Returns an int which is the number of elements in the ArrayList collection

Format:

arrayListObject.size()

Example:

JOptionPane.showMessageDialog(null, departmentList.size());

The get() Method for ArrayList

Retrieves an individual element from the specified position in ArrayList collection

Format:

arrayListObject.get(index)

– The index is an int between zero (0) and one less than the number of items in the
ArrayList

Example:

JOptionPane.showMessageDialog(null, departmentList.get(index));

– The element is not removed from the collection

The indexOf() Method for ArrayList (Page 1)

Searches for first occurrence of the object argument in the ArrayList collection—tests
for an equal to (==) condition

The method returns either :

– An int which is the index representing its position in the ArrayList collection

– Or -1 if the search criteria value is not found

The indexOf() Method for ArrayList (Page 2)

Format:

arrayListObject.indexOf(object)

Example:

index = departmentList.indexOf("COMPUTER");

The remove() Method for ArrayList (Page 1)

Deletes an individual element from the specified position in ArrayList collection

All elements after the deleted item move up one element to fill the gap

The remove() Method for ArrayList (Page 2)

Format:

arrayListObject.remove(index);

The index is an integer between zero (0) and one less than the number of elements
in the ArrayList

Example:

departmentList.remove(index);

MiniQuiz No. 2 (Page 1)

Open the “college” project and create a new class Alum that extends from
CommunityMember

There are two data fields:

– gradYear—the year the alumnus or alumna graduated

– degree—the degree granted to the alumnus or alumna

An ArrayList of Strings stores valid degrees including “B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”

Alum.java (Page 1)

MiniQuiz No. 2 (Page 2)

The constructor:

– Takes two Strings for firstName and lastName, an int for gradYear and a String for
degree

– Passes firstName and lastName to the superclass constructor

– Instantiates the ArrayList and assigns the values (“B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”)

– Calls the set methods for gradYear and degree

Alum.java (Page 2)

MiniQuiz No. 2 (Page 3)

The set method for gradYear updates the data field if the parameter is between 1960
and 2013, or is zero (0) meaning is not set

The set method for degree updates the data field if the parameter is in the degrees
ArrayList

Include get methods for gradYear and degree

The toString() method links to the toString() of CommunityMember and includes
labels before the return values of the two get methods

Alum.java (Page 3)

Alum.java (Page 4)

Alum.java (Page 5)

Alum.java (Page 6)

1

2

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

Objected-Oriented and Inheritance

CST141

OOP

Object-Oriented Programming is characterized by three features:

– Encapsulation

– Inheritance

•New classes created from (extends) existing classes by absorbing (inheriting)
their attributes/properties (instance variables) and behaviors (methods)

– Polymorphism

•The ability of an object to take on many forms; a common use occurs in OOP
when a parent class reference is used to refer to a child class object

AnnualSalaryCheck and HourlySalaryCheck Classes without Inheritance

AnnualSalaryCheck

- checkNumber

- employeeID

- annualSalary

+ setCheckNumber()

+ setEmployeeID()

+ setAnnualSalary()

+ getCheckNumber()

+ getEmployeeID()

+ getAnnualSalary()

+ getGrossPay()

HourlySalaryCheck

- checkNumber

- employeeID

- hoursWorked

- payRate

+ setCheckNumber()

+ setEmployeeID()

+ setHoursWorked()

+ setPayRate()

+ getCheckNumber()

+ getEmployeeID()

+ getHoursWorked()

+ getPayRate()

+ getGrossPay()

Code Duplication without Inheritance

Classes that operate on similar entities often have many identical elements

– Makes maintenance difficult/more work

– Introduces danger of bugs through incorrect maintenance

Code duplication also can carry over introducing problems to the driver classes

Inheritance

When a new class is created, it inherits the instance variables and methods of any
previously defined superclass

This subclass gets its initial features from the direct superclass

An indirect superclass is inherited from two or more levels above in a class hierarchy

The Subclass

The subclass is usually larger than its superclass …

– Because it adds instance variables and methods of its own to those of the
superclass

– Also it is possible to define additions to, or replacements for, inherited superclass
features

It is more specific than the superclass …

– Therefore it has a smaller number of situations in which it can be used

The Superclass

Each superclass exists at the top of a hierarchical relationship with its subclasses

A superclass may have several direct subclasses which inherit its features

A subclass to one superclass may be a superclass to other subclasses

A Payroll Hierarchy

A College Inheritance Hierarchy

“Has a …” vs. “Is a …”

These two phrases that express the nature of relationships and class attributes
between superclasses and subclasses in inheritance:

– A class to its own attributes (“has a”)

– A subclass to the superclass from which it inherits additional attributes (“is a”)

“Has a …” Relationships

“Has a” relationship expresses the attributes (instance variables) within the class
(called composition)

A class “has a(n)” attribute, i.e.

– HourlySalaryCheck “has an” HoursWorked, “has a” Pay Rate

– CommunityMember “has a” First Name, “has a” Last Name, “has an” Address, etc.

“Is a …” Relationships

“Is a” relationship expresses inheritance

Subclass “is a” superclass, i.e.

– AnnualSalaryCheck “is a” PayrollCheck

•And has all the attributes of a PayrollCheck, i.e. if PayrollCheck “has a” Check
Number attribute, AnnualSalaryCheck does also

– Teacher “is a” Faculty

•And has all the attributes of a Faculty member, i.e. if Faculty “has a” Rank
attribute, Teacher does also

Class Libraries (Page 1)

New classes inherit features from an organization's own class library

When developing a new class:

– First try to find a place for it in the existing inheritance hierarchy

– Only if it does not fit into the current class library structure should it be the
beginning of a new inheritance hierarchy segment

Class Libraries (Page 2)

Java API uses inheritance to build its vast library collection of classes

A Payroll Hierarchy

PayrollCheck, AnnualSalaryCheck and HourlySalaryCheck Classes with
Inheritance

AnnualSalaryCheck

annualSalary

setAnnualSalary()

getAnnualSalary()

getGrossPay()

HourlySalaryCheck

hoursWorked

payRate

setHoursWorked()

setPayRate()

getHoursWorked()

getPayRate()

getGrossPay()

PayrollCheck.java (Page 1)

PayrollCheck.java (Page 2)

PayrollCheck.java (Page 3)

PayrollCheck.java (Page 4)

PayrollCheck.java (Page 5)

A PayrollLedger Hierarchy

The Keyword extends (Page 1)

Declares that this class is a direct subclass of the superclass that is named following
the keyword extends

The class inherits all public and protected members (instance variables and methods)
of the superclass

A class may extend (inherit) directly only from one class (its direct superclass)

The Keyword extends (Page 2)

Format:

public class SubClassName extends DirectSuperClassName {

Examples:

public class HourlySalaryCheck extends PayrollCheck {

public class Faculty extends Employee {

Superclass Constructor Call (Page 1)

Subclass constructors always must contain a call to “super” (to its direct superclass
constructor method), or ...

If none is written, the compiler inserts one (an implicit call without parameters)

– Works only if superclass has a constructor without parameters

Superclass Constructor Call (Page 2)

Must be the first statement in the body of the subclass constructor

Example:

public AnnualSalaryCheck(int checkNumber, int employeeID, double annualSalary)

{

super(checkNumber, employeeID);

setAnnualSalary(annualSalary);

}

Calling Superclass Methods

The public members of a superclass are callable from the subclass

Format:

[super.]superclassMethod(parameters)

– Keyword super is not required (and is not standard usage) unless overriding
superclass methods

Examples:

super.toString()

super.getEmployeeID;

getEmployeeID;

Method Overriding (Page 1)

To modify the implementation of an inherited method in a subclass

Example:

public String toString()

{

return super.toString()

+ "\nHours worked: " + getHoursWorked()

+ "\nPay rate: " + getPayRate()

+ "\nGross pay: " + getGrossPay();

}

Method Overriding (Page 2)

Superclass method must be public (accessible)

– A private superclass method cannot be overridden

Methods that are static can be inherited but not overridden

– To access a “hidden” (because a method of the same name exists in the subclass)
static method in a superclass, use the class name, e.g.

SuperclassName.staticMethodName()

The @Override Annotation

Placing @Override before a subclass method denotes that the method must override
the method in the superclass

Format:

@Overrides

public type subclassMethodName()

{ …

Example:

@Overrides

public String toString()

{ …

HourlySalaryCheck.java(Page 1)

HourlySalaryCheck.java(Page 2)

HourlySalaryCheck.java(Page 3)

HourlySalaryCheck.java(Page 4)

Instantiate an HourlyPayrollCheck object

The DecimalFormat Class (Page 1)

Class used to create objects used to format numbers for output

Stored in the java.text package

import java.text.DecimalFormat;

Format:

DecimalFormat objectName = new DecimalFormat("formatString");

– formatString argument is a String of characters that specify how numbers will be
formatted

The DecimalFormat Class (Page 2)

Example 1:

DecimalFormat commaFormat = new DecimalFormat("#,##0");

The String argument "#,##0" specifies that the number will display:

– With commas at the thousands, millions, etc.

•Only if number is 1000 or greater; otherwise printing of leading zeros and
commas are from the 10’s position to the left are suppressed

– Rounded to the nearest integer

The DecimalFormat Class (Page 3)

Example 2:

DecimalFormat twoDecimals = new DecimalFormat("0.00");

The String argument "0.00" specifies that the number will display:

– At least one digit to the left of the decimal point

– Exactly two digits (rounded) to the right of the decimal point

The DecimalFormat Class (Page 4)

The functionality of Examples 1 and 2 can be combined to add commas to the two
decimals rounded:

DecimalFormat grossPayFormat = new DecimalFormat("#,##0.00");

A floating dollar sign could be inserted prior to the rest of the format string:

DecimalFormat grossPayFormat = new DecimalFormat("$#,##0.00");

The format Method

Formats a numeric value according to the DecimalFormat object's format string

Takes one variable/value (either float or double) as its single argument

Format:

decimalFormatObject.format(float/double);

Example:

JOptionPane.showMessageDialog(null, grossPayFormat.format(grossPay));

Driver1.java (Version 2) (Page 1)

Driver1.java (Version 2) (Page 2)

A PayrollLedger Hierarchy

AnnualSalaryCheck.java (Page 1)

AnnualSalaryCheck.java (Page 2)

AnnualSalaryCheck.java (Page 3)

AnnualSalaryCheck.java (Page 4)

AnnualSalaryCheck.java (Page 5)

AnnualSalaryCheck.java (Page 6)

Driver1.java (Page 2)

Extendible Classes (Page 1)

Software is extendible when it can be easily updated and reused to do something that
the original author never imagined

Extendibility is enhanced by:

– Loose coupling—few connections

– Class cohesion —classes with one single, well defined entity

– Responsibility-driven design in which classes are responsible for manipulating their
own data

Extendible Classes (Page 2)

When developing a new class, look to find a place where it can extend another class
in the existing inheritance hierarchy

Sometime superclasses in an inheritance hierarchy only serve to support subclasses

– Such superclasses are called abstract classes (never have objects instantiated from
them)

A PayrollLedger Hierarchy

MiniQuiz

Define a new class ConsultantCheck that extends from PayrollCheck for consultants
who receive a check based on a one-time payment

Consultant Check UML Diagram

MiniQuiz (Page 1)

A single data field payment of type double stores the value of the one-time payment

The no-argument constructor passes values for checkNumber, employeeID and
payment to the overloaded constructor

The ConsultantCheck Class (Page 1)

public class ConsultantCheck extends PayrollCheck

{

private double payment;

public ConsultantCheck()

{

// Implicit call to superclass Payrol

this(0, 0, 0.0);

}

The ConsultantCheck Class (Image page 1)

MiniQuiz (Page 2)

The int, int, double constructor passes:

– checkNumber and employeeID to the superclass constructor

– payment to the set method

The ConsultantCheck Class (Page 2)

public ConsultantCheck(int checkNumber,

int employeeID,

double payment)

{

// Explicit call to superclass PayrollChe

super(checkNumber, employeeID);

setPayment(payment);

}

The ConsultantCheck Class (Image page 2)

MiniQuiz (Page 3)

The set method assigns the parameter to the payment data field if that parameter is
zero (0) or greater

– Value zero (0) indicates that the payment field is empty

The ConsultantCheck Class (Page 3)

public void setPayment(double payment)

{

if (payment >= 0)

{

this.payment = payment;

}

}

The ConsultantCheck Class (Image page 3)

MiniQuiz (Page 4)

The get method returns the value of the payment data field

The getGrossPay() method returns the value of the getPayment() method

The ConsultantCheck Class (Page 4)

public double getPayment()

{

return payment;

}

public double getGrossPay()

{

return getPayment();

}

}

The ConsultantCheck Class (Image page 4)

MiniQuiz (Page 5)

The toString() method returns:

– A formatted String representation of the grossPay data field formatted to dollars
and cents including text labels

– Preceded by the checkNumber and employeeID data fields from a call to toString()
method of superclass PayrollCheck

The ConsultantCheck Class (Page 5)

public String toString()

{

return super.toString()

+ "\nPayment: "

+ dollarsCents.format(

getGrossPay());

}

}

The ConsultantCheck Class (Image page 5)

Driver1.java (Page 2)

The Class Object (Page 1)

The superclass of all classes (either direct or indirect) is Object from the Java API …

– If a class definition does not explicitly extend another class, it extends Object
directly

The following two class headers effectively are identical:

public class PayrollCheck {

public class PayrollCheck extends Object

{

The Class Object (Page 2)

As a result all classes inherit eleven (11) public methods from Object including:

– toString(), equals() and hashCode()

Additionally classes from the Java API use inheritance extensively and extend also
from class Object (directly or indirectly)

A PayrollLedger Hierarchy

PayrollCheck.java (Page 1)

The toString() Method of Class Object

Method toString() is a member of class Object that returns a String representation of
an object

All classes inherit the toString() method either directly or indirectly from Object

– May be called or overridden

Returns the class name of which the object is an instance and a hash code (start
address where the object is stored in memory in hexadecimal), e.g.

– HourlySalaryCheck@15037e5

PayrollCheck.java (Object.toString() —Page 5)

Advantages of Inheritance (so far)

Avoiding code duplication

Code reuse

Easier maintenance

Extendibility

Subtyping (Page 1)

Types defined by a subclass definition actually are subtypes of their superclass

If HourlySalaryCheck and AnnualSalaryCheck classes are extensions of class
PayrollCheck:

– The superclass object:

PayrollCheck pay;

– Can be instantiated by calling its subtype constructor:

pay = new AnnualSalaryCheck();

– Or in a single statement:

PayrollCheck pay = new AnnualSalaryCheck();

Subtyping (Page 2)

Now the subtyped object can differentiate between getGrossPay() methods of
HourlySalaryCheck and AnnualSalaryCheck classes when called:

JOptionPane.showMessageDialog(null, pay.getGrossPay());

– This is an example of polymorphism (meaning “many shapes” or “many forms”)

– In this case the method behavior changes based upon which constructor was used
to instantiate it

Driver2.java (Page 1)

Driver2.java (Page 2)

The ArrayList Class (Page 1)

Used to create a list of items in a flexible-sized collection

The capacity of an ArrayList object is initialized to start at ten (10) elements but
grows as items are added to it

The ArrayList Class (Page 2)

The class has a whole series of methods of its own which can be used to
automatically manipulate objects instantiated from it

Found in the java.util package of the Java API library:

import java.util.ArrayList;

The ArrayList Class (Page 3)

Format to declare an ArrayList object:

ArrayList<type> objectName;

Example:

private ArrayList<String> departmentList;

– ArrayList is a generic class requiring a subtype specified as a parameter

– Enclosed in <chevrons>, e.g. <angle brackets>

– The example data field above departmentList is called an “ArrayList of Strings”

Instantiating ArrayList Objects (Page 1)

Similar syntax to that which is used when instantiating objects …

– Includes the second type parameter enclosed in <chevrons>

Format:

objectName = new ArrayList<type>();

Example:

departmentList = new ArrayList<String>();

Instantiating ArrayList Objects (Page 2)

Format to declare and instantiate the object in a single statement:

ArrayList<type> objectName = new ArrayList<type>();

Example:

ArrayList<String> departmentList = new ArrayList<String>();

The add() Method for ArrayList

Appends this element (object) to the end of the ArrayList collection

Format:

arrayListObject.add(object);

– The object represents the value added as a new element to the ArrayList collection

Example:

departmentList.add("COMPUTER");

The size() Method for ArrayList

Returns an int which is the number of elements in the ArrayList collection

Format:

arrayListObject.size()

Example:

JOptionPane.showMessageDialog(null, departmentList.size());

The get() Method for ArrayList

Retrieves an individual element from the specified position in ArrayList collection

Format:

arrayListObject.get(index)

– The index is an int between zero (0) and one less than the number of items in the
ArrayList

Example:

JOptionPane.showMessageDialog(null, departmentList.get(index));

– The element is not removed from the collection

The indexOf() Method for ArrayList (Page 1)

Searches for first occurrence of the object argument in the ArrayList collection—tests
for an equal to (==) condition

The method returns either :

– An int which is the index representing its position in the ArrayList collection

– Or -1 if the search criteria value is not found

The indexOf() Method for ArrayList (Page 2)

Format:

arrayListObject.indexOf(object)

Example:

index = departmentList.indexOf("COMPUTER");

The remove() Method for ArrayList (Page 1)

Deletes an individual element from the specified position in ArrayList collection

All elements after the deleted item move up one element to fill the gap

The remove() Method for ArrayList (Page 2)

Format:

arrayListObject.remove(index);

The index is an integer between zero (0) and one less than the number of elements
in the ArrayList

Example:

departmentList.remove(index);

MiniQuiz No. 2 (Page 1)

Open the “college” project and create a new class Alum that extends from
CommunityMember

There are two data fields:

– gradYear—the year the alumnus or alumna graduated

– degree—the degree granted to the alumnus or alumna

An ArrayList of Strings stores valid degrees including “B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”

Alum.java (Page 1)

MiniQuiz No. 2 (Page 2)

The constructor:

– Takes two Strings for firstName and lastName, an int for gradYear and a String for
degree

– Passes firstName and lastName to the superclass constructor

– Instantiates the ArrayList and assigns the values (“B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”)

– Calls the set methods for gradYear and degree

Alum.java (Page 2)

MiniQuiz No. 2 (Page 3)

The set method for gradYear updates the data field if the parameter is between 1960
and 2013, or is zero (0) meaning is not set

The set method for degree updates the data field if the parameter is in the degrees
ArrayList

Include get methods for gradYear and degree

The toString() method links to the toString() of CommunityMember and includes
labels before the return values of the two get methods

Alum.java (Page 3)

Alum.java (Page 4)

Alum.java (Page 5)

Alum.java (Page 6)

1

2

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

CST141--Inheritance Page 5

Objected-Oriented and Inheritance

CST141

OOP

Object-Oriented Programming is characterized by three features:

– Encapsulation

– Inheritance

•New classes created from (extends) existing classes by absorbing (inheriting)
their attributes/properties (instance variables) and behaviors (methods)

– Polymorphism

•The ability of an object to take on many forms; a common use occurs in OOP
when a parent class reference is used to refer to a child class object

AnnualSalaryCheck and HourlySalaryCheck Classes without Inheritance

AnnualSalaryCheck

- checkNumber

- employeeID

- annualSalary

+ setCheckNumber()

+ setEmployeeID()

+ setAnnualSalary()

+ getCheckNumber()

+ getEmployeeID()

+ getAnnualSalary()

+ getGrossPay()

HourlySalaryCheck

- checkNumber

- employeeID

- hoursWorked

- payRate

+ setCheckNumber()

+ setEmployeeID()

+ setHoursWorked()

+ setPayRate()

+ getCheckNumber()

+ getEmployeeID()

+ getHoursWorked()

+ getPayRate()

+ getGrossPay()

Code Duplication without Inheritance

Classes that operate on similar entities often have many identical elements

– Makes maintenance difficult/more work

– Introduces danger of bugs through incorrect maintenance

Code duplication also can carry over introducing problems to the driver classes

Inheritance

When a new class is created, it inherits the instance variables and methods of any
previously defined superclass

This subclass gets its initial features from the direct superclass

An indirect superclass is inherited from two or more levels above in a class hierarchy

The Subclass

The subclass is usually larger than its superclass …

– Because it adds instance variables and methods of its own to those of the
superclass

– Also it is possible to define additions to, or replacements for, inherited superclass
features

It is more specific than the superclass …

– Therefore it has a smaller number of situations in which it can be used

The Superclass

Each superclass exists at the top of a hierarchical relationship with its subclasses

A superclass may have several direct subclasses which inherit its features

A subclass to one superclass may be a superclass to other subclasses

A Payroll Hierarchy

A College Inheritance Hierarchy

“Has a …” vs. “Is a …”

These two phrases that express the nature of relationships and class attributes
between superclasses and subclasses in inheritance:

– A class to its own attributes (“has a”)

– A subclass to the superclass from which it inherits additional attributes (“is a”)

“Has a …” Relationships

“Has a” relationship expresses the attributes (instance variables) within the class
(called composition)

A class “has a(n)” attribute, i.e.

– HourlySalaryCheck “has an” HoursWorked, “has a” Pay Rate

– CommunityMember “has a” First Name, “has a” Last Name, “has an” Address, etc.

“Is a …” Relationships

“Is a” relationship expresses inheritance

Subclass “is a” superclass, i.e.

– AnnualSalaryCheck “is a” PayrollCheck

•And has all the attributes of a PayrollCheck, i.e. if PayrollCheck “has a” Check
Number attribute, AnnualSalaryCheck does also

– Teacher “is a” Faculty

•And has all the attributes of a Faculty member, i.e. if Faculty “has a” Rank
attribute, Teacher does also

Class Libraries (Page 1)

New classes inherit features from an organization's own class library

When developing a new class:

– First try to find a place for it in the existing inheritance hierarchy

– Only if it does not fit into the current class library structure should it be the
beginning of a new inheritance hierarchy segment

Class Libraries (Page 2)

Java API uses inheritance to build its vast library collection of classes

A Payroll Hierarchy

PayrollCheck, AnnualSalaryCheck and HourlySalaryCheck Classes with
Inheritance

AnnualSalaryCheck

annualSalary

setAnnualSalary()

getAnnualSalary()

getGrossPay()

HourlySalaryCheck

hoursWorked

payRate

setHoursWorked()

setPayRate()

getHoursWorked()

getPayRate()

getGrossPay()

PayrollCheck.java (Page 1)

PayrollCheck.java (Page 2)

PayrollCheck.java (Page 3)

PayrollCheck.java (Page 4)

PayrollCheck.java (Page 5)

A PayrollLedger Hierarchy

The Keyword extends (Page 1)

Declares that this class is a direct subclass of the superclass that is named following
the keyword extends

The class inherits all public and protected members (instance variables and methods)
of the superclass

A class may extend (inherit) directly only from one class (its direct superclass)

The Keyword extends (Page 2)

Format:

public class SubClassName extends DirectSuperClassName {

Examples:

public class HourlySalaryCheck extends PayrollCheck {

public class Faculty extends Employee {

Superclass Constructor Call (Page 1)

Subclass constructors always must contain a call to “super” (to its direct superclass
constructor method), or ...

If none is written, the compiler inserts one (an implicit call without parameters)

– Works only if superclass has a constructor without parameters

Superclass Constructor Call (Page 2)

Must be the first statement in the body of the subclass constructor

Example:

public AnnualSalaryCheck(int checkNumber, int employeeID, double annualSalary)

{

super(checkNumber, employeeID);

setAnnualSalary(annualSalary);

}

Calling Superclass Methods

The public members of a superclass are callable from the subclass

Format:

[super.]superclassMethod(parameters)

– Keyword super is not required (and is not standard usage) unless overriding
superclass methods

Examples:

super.toString()

super.getEmployeeID;

getEmployeeID;

Method Overriding (Page 1)

To modify the implementation of an inherited method in a subclass

Example:

public String toString()

{

return super.toString()

+ "\nHours worked: " + getHoursWorked()

+ "\nPay rate: " + getPayRate()

+ "\nGross pay: " + getGrossPay();

}

Method Overriding (Page 2)

Superclass method must be public (accessible)

– A private superclass method cannot be overridden

Methods that are static can be inherited but not overridden

– To access a “hidden” (because a method of the same name exists in the subclass)
static method in a superclass, use the class name, e.g.

SuperclassName.staticMethodName()

The @Override Annotation

Placing @Override before a subclass method denotes that the method must override
the method in the superclass

Format:

@Overrides

public type subclassMethodName()

{ …

Example:

@Overrides

public String toString()

{ …

HourlySalaryCheck.java(Page 1)

HourlySalaryCheck.java(Page 2)

HourlySalaryCheck.java(Page 3)

HourlySalaryCheck.java(Page 4)

Instantiate an HourlyPayrollCheck object

The DecimalFormat Class (Page 1)

Class used to create objects used to format numbers for output

Stored in the java.text package

import java.text.DecimalFormat;

Format:

DecimalFormat objectName = new DecimalFormat("formatString");

– formatString argument is a String of characters that specify how numbers will be
formatted

The DecimalFormat Class (Page 2)

Example 1:

DecimalFormat commaFormat = new DecimalFormat("#,##0");

The String argument "#,##0" specifies that the number will display:

– With commas at the thousands, millions, etc.

•Only if number is 1000 or greater; otherwise printing of leading zeros and
commas are from the 10’s position to the left are suppressed

– Rounded to the nearest integer

The DecimalFormat Class (Page 3)

Example 2:

DecimalFormat twoDecimals = new DecimalFormat("0.00");

The String argument "0.00" specifies that the number will display:

– At least one digit to the left of the decimal point

– Exactly two digits (rounded) to the right of the decimal point

The DecimalFormat Class (Page 4)

The functionality of Examples 1 and 2 can be combined to add commas to the two
decimals rounded:

DecimalFormat grossPayFormat = new DecimalFormat("#,##0.00");

A floating dollar sign could be inserted prior to the rest of the format string:

DecimalFormat grossPayFormat = new DecimalFormat("$#,##0.00");

The format Method

Formats a numeric value according to the DecimalFormat object's format string

Takes one variable/value (either float or double) as its single argument

Format:

decimalFormatObject.format(float/double);

Example:

JOptionPane.showMessageDialog(null, grossPayFormat.format(grossPay));

Driver1.java (Version 2) (Page 1)

Driver1.java (Version 2) (Page 2)

A PayrollLedger Hierarchy

AnnualSalaryCheck.java (Page 1)

AnnualSalaryCheck.java (Page 2)

AnnualSalaryCheck.java (Page 3)

AnnualSalaryCheck.java (Page 4)

AnnualSalaryCheck.java (Page 5)

AnnualSalaryCheck.java (Page 6)

Driver1.java (Page 2)

Extendible Classes (Page 1)

Software is extendible when it can be easily updated and reused to do something that
the original author never imagined

Extendibility is enhanced by:

– Loose coupling—few connections

– Class cohesion —classes with one single, well defined entity

– Responsibility-driven design in which classes are responsible for manipulating their
own data

Extendible Classes (Page 2)

When developing a new class, look to find a place where it can extend another class
in the existing inheritance hierarchy

Sometime superclasses in an inheritance hierarchy only serve to support subclasses

– Such superclasses are called abstract classes (never have objects instantiated from
them)

A PayrollLedger Hierarchy

MiniQuiz

Define a new class ConsultantCheck that extends from PayrollCheck for consultants
who receive a check based on a one-time payment

Consultant Check UML Diagram

MiniQuiz (Page 1)

A single data field payment of type double stores the value of the one-time payment

The no-argument constructor passes values for checkNumber, employeeID and
payment to the overloaded constructor

The ConsultantCheck Class (Page 1)

public class ConsultantCheck extends PayrollCheck

{

private double payment;

public ConsultantCheck()

{

// Implicit call to superclass Payrol

this(0, 0, 0.0);

}

The ConsultantCheck Class (Image page 1)

MiniQuiz (Page 2)

The int, int, double constructor passes:

– checkNumber and employeeID to the superclass constructor

– payment to the set method

The ConsultantCheck Class (Page 2)

public ConsultantCheck(int checkNumber,

int employeeID,

double payment)

{

// Explicit call to superclass PayrollChe

super(checkNumber, employeeID);

setPayment(payment);

}

The ConsultantCheck Class (Image page 2)

MiniQuiz (Page 3)

The set method assigns the parameter to the payment data field if that parameter is
zero (0) or greater

– Value zero (0) indicates that the payment field is empty

The ConsultantCheck Class (Page 3)

public void setPayment(double payment)

{

if (payment >= 0)

{

this.payment = payment;

}

}

The ConsultantCheck Class (Image page 3)

MiniQuiz (Page 4)

The get method returns the value of the payment data field

The getGrossPay() method returns the value of the getPayment() method

The ConsultantCheck Class (Page 4)

public double getPayment()

{

return payment;

}

public double getGrossPay()

{

return getPayment();

}

}

The ConsultantCheck Class (Image page 4)

MiniQuiz (Page 5)

The toString() method returns:

– A formatted String representation of the grossPay data field formatted to dollars
and cents including text labels

– Preceded by the checkNumber and employeeID data fields from a call to toString()
method of superclass PayrollCheck

The ConsultantCheck Class (Page 5)

public String toString()

{

return super.toString()

+ "\nPayment: "

+ dollarsCents.format(

getGrossPay());

}

}

The ConsultantCheck Class (Image page 5)

Driver1.java (Page 2)

The Class Object (Page 1)

The superclass of all classes (either direct or indirect) is Object from the Java API …

– If a class definition does not explicitly extend another class, it extends Object
directly

The following two class headers effectively are identical:

public class PayrollCheck {

public class PayrollCheck extends Object

{

The Class Object (Page 2)

As a result all classes inherit eleven (11) public methods from Object including:

– toString(), equals() and hashCode()

Additionally classes from the Java API use inheritance extensively and extend also
from class Object (directly or indirectly)

A PayrollLedger Hierarchy

PayrollCheck.java (Page 1)

The toString() Method of Class Object

Method toString() is a member of class Object that returns a String representation of
an object

All classes inherit the toString() method either directly or indirectly from Object

– May be called or overridden

Returns the class name of which the object is an instance and a hash code (start
address where the object is stored in memory in hexadecimal), e.g.

– HourlySalaryCheck@15037e5

PayrollCheck.java (Object.toString() —Page 5)

Advantages of Inheritance (so far)

Avoiding code duplication

Code reuse

Easier maintenance

Extendibility

Subtyping (Page 1)

Types defined by a subclass definition actually are subtypes of their superclass

If HourlySalaryCheck and AnnualSalaryCheck classes are extensions of class
PayrollCheck:

– The superclass object:

PayrollCheck pay;

– Can be instantiated by calling its subtype constructor:

pay = new AnnualSalaryCheck();

– Or in a single statement:

PayrollCheck pay = new AnnualSalaryCheck();

Subtyping (Page 2)

Now the subtyped object can differentiate between getGrossPay() methods of
HourlySalaryCheck and AnnualSalaryCheck classes when called:

JOptionPane.showMessageDialog(null, pay.getGrossPay());

– This is an example of polymorphism (meaning “many shapes” or “many forms”)

– In this case the method behavior changes based upon which constructor was used
to instantiate it

Driver2.java (Page 1)

Driver2.java (Page 2)

The ArrayList Class (Page 1)

Used to create a list of items in a flexible-sized collection

The capacity of an ArrayList object is initialized to start at ten (10) elements but
grows as items are added to it

The ArrayList Class (Page 2)

The class has a whole series of methods of its own which can be used to
automatically manipulate objects instantiated from it

Found in the java.util package of the Java API library:

import java.util.ArrayList;

The ArrayList Class (Page 3)

Format to declare an ArrayList object:

ArrayList<type> objectName;

Example:

private ArrayList<String> departmentList;

– ArrayList is a generic class requiring a subtype specified as a parameter

– Enclosed in <chevrons>, e.g. <angle brackets>

– The example data field above departmentList is called an “ArrayList of Strings”

Instantiating ArrayList Objects (Page 1)

Similar syntax to that which is used when instantiating objects …

– Includes the second type parameter enclosed in <chevrons>

Format:

objectName = new ArrayList<type>();

Example:

departmentList = new ArrayList<String>();

Instantiating ArrayList Objects (Page 2)

Format to declare and instantiate the object in a single statement:

ArrayList<type> objectName = new ArrayList<type>();

Example:

ArrayList<String> departmentList = new ArrayList<String>();

The add() Method for ArrayList

Appends this element (object) to the end of the ArrayList collection

Format:

arrayListObject.add(object);

– The object represents the value added as a new element to the ArrayList collection

Example:

departmentList.add("COMPUTER");

The size() Method for ArrayList

Returns an int which is the number of elements in the ArrayList collection

Format:

arrayListObject.size()

Example:

JOptionPane.showMessageDialog(null, departmentList.size());

The get() Method for ArrayList

Retrieves an individual element from the specified position in ArrayList collection

Format:

arrayListObject.get(index)

– The index is an int between zero (0) and one less than the number of items in the
ArrayList

Example:

JOptionPane.showMessageDialog(null, departmentList.get(index));

– The element is not removed from the collection

The indexOf() Method for ArrayList (Page 1)

Searches for first occurrence of the object argument in the ArrayList collection—tests
for an equal to (==) condition

The method returns either :

– An int which is the index representing its position in the ArrayList collection

– Or -1 if the search criteria value is not found

The indexOf() Method for ArrayList (Page 2)

Format:

arrayListObject.indexOf(object)

Example:

index = departmentList.indexOf("COMPUTER");

The remove() Method for ArrayList (Page 1)

Deletes an individual element from the specified position in ArrayList collection

All elements after the deleted item move up one element to fill the gap

The remove() Method for ArrayList (Page 2)

Format:

arrayListObject.remove(index);

The index is an integer between zero (0) and one less than the number of elements
in the ArrayList

Example:

departmentList.remove(index);

MiniQuiz No. 2 (Page 1)

Open the “college” project and create a new class Alum that extends from
CommunityMember

There are two data fields:

– gradYear—the year the alumnus or alumna graduated

– degree—the degree granted to the alumnus or alumna

An ArrayList of Strings stores valid degrees including “B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”

Alum.java (Page 1)

MiniQuiz No. 2 (Page 2)

The constructor:

– Takes two Strings for firstName and lastName, an int for gradYear and a String for
degree

– Passes firstName and lastName to the superclass constructor

– Instantiates the ArrayList and assigns the values (“B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”)

– Calls the set methods for gradYear and degree

Alum.java (Page 2)

MiniQuiz No. 2 (Page 3)

The set method for gradYear updates the data field if the parameter is between 1960
and 2013, or is zero (0) meaning is not set

The set method for degree updates the data field if the parameter is in the degrees
ArrayList

Include get methods for gradYear and degree

The toString() method links to the toString() of CommunityMember and includes
labels before the return values of the two get methods

Alum.java (Page 3)

Alum.java (Page 4)

Alum.java (Page 5)

Alum.java (Page 6)

1

2

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

Objected-Oriented and Inheritance

CST141

OOP

Object-Oriented Programming is characterized by three features:

– Encapsulation

– Inheritance

•New classes created from (extends) existing classes by absorbing (inheriting)
their attributes/properties (instance variables) and behaviors (methods)

– Polymorphism

•The ability of an object to take on many forms; a common use occurs in OOP
when a parent class reference is used to refer to a child class object

AnnualSalaryCheck and HourlySalaryCheck Classes without Inheritance

AnnualSalaryCheck

- checkNumber

- employeeID

- annualSalary

+ setCheckNumber()

+ setEmployeeID()

+ setAnnualSalary()

+ getCheckNumber()

+ getEmployeeID()

+ getAnnualSalary()

+ getGrossPay()

HourlySalaryCheck

- checkNumber

- employeeID

- hoursWorked

- payRate

+ setCheckNumber()

+ setEmployeeID()

+ setHoursWorked()

+ setPayRate()

+ getCheckNumber()

+ getEmployeeID()

+ getHoursWorked()

+ getPayRate()

+ getGrossPay()

Code Duplication without Inheritance

Classes that operate on similar entities often have many identical elements

– Makes maintenance difficult/more work

– Introduces danger of bugs through incorrect maintenance

Code duplication also can carry over introducing problems to the driver classes

Inheritance

When a new class is created, it inherits the instance variables and methods of any
previously defined superclass

This subclass gets its initial features from the direct superclass

An indirect superclass is inherited from two or more levels above in a class hierarchy

The Subclass

The subclass is usually larger than its superclass …

– Because it adds instance variables and methods of its own to those of the
superclass

– Also it is possible to define additions to, or replacements for, inherited superclass
features

It is more specific than the superclass …

– Therefore it has a smaller number of situations in which it can be used

The Superclass

Each superclass exists at the top of a hierarchical relationship with its subclasses

A superclass may have several direct subclasses which inherit its features

A subclass to one superclass may be a superclass to other subclasses

A Payroll Hierarchy

A College Inheritance Hierarchy

“Has a …” vs. “Is a …”

These two phrases that express the nature of relationships and class attributes
between superclasses and subclasses in inheritance:

– A class to its own attributes (“has a”)

– A subclass to the superclass from which it inherits additional attributes (“is a”)

“Has a …” Relationships

“Has a” relationship expresses the attributes (instance variables) within the class
(called composition)

A class “has a(n)” attribute, i.e.

– HourlySalaryCheck “has an” HoursWorked, “has a” Pay Rate

– CommunityMember “has a” First Name, “has a” Last Name, “has an” Address, etc.

“Is a …” Relationships

“Is a” relationship expresses inheritance

Subclass “is a” superclass, i.e.

– AnnualSalaryCheck “is a” PayrollCheck

•And has all the attributes of a PayrollCheck, i.e. if PayrollCheck “has a” Check
Number attribute, AnnualSalaryCheck does also

– Teacher “is a” Faculty

•And has all the attributes of a Faculty member, i.e. if Faculty “has a” Rank
attribute, Teacher does also

Class Libraries (Page 1)

New classes inherit features from an organization's own class library

When developing a new class:

– First try to find a place for it in the existing inheritance hierarchy

– Only if it does not fit into the current class library structure should it be the
beginning of a new inheritance hierarchy segment

Class Libraries (Page 2)

Java API uses inheritance to build its vast library collection of classes

A Payroll Hierarchy

PayrollCheck, AnnualSalaryCheck and HourlySalaryCheck Classes with
Inheritance

AnnualSalaryCheck

annualSalary

setAnnualSalary()

getAnnualSalary()

getGrossPay()

HourlySalaryCheck

hoursWorked

payRate

setHoursWorked()

setPayRate()

getHoursWorked()

getPayRate()

getGrossPay()

PayrollCheck.java (Page 1)

PayrollCheck.java (Page 2)

PayrollCheck.java (Page 3)

PayrollCheck.java (Page 4)

PayrollCheck.java (Page 5)

A PayrollLedger Hierarchy

The Keyword extends (Page 1)

Declares that this class is a direct subclass of the superclass that is named following
the keyword extends

The class inherits all public and protected members (instance variables and methods)
of the superclass

A class may extend (inherit) directly only from one class (its direct superclass)

The Keyword extends (Page 2)

Format:

public class SubClassName extends DirectSuperClassName {

Examples:

public class HourlySalaryCheck extends PayrollCheck {

public class Faculty extends Employee {

Superclass Constructor Call (Page 1)

Subclass constructors always must contain a call to “super” (to its direct superclass
constructor method), or ...

If none is written, the compiler inserts one (an implicit call without parameters)

– Works only if superclass has a constructor without parameters

Superclass Constructor Call (Page 2)

Must be the first statement in the body of the subclass constructor

Example:

public AnnualSalaryCheck(int checkNumber, int employeeID, double annualSalary)

{

super(checkNumber, employeeID);

setAnnualSalary(annualSalary);

}

Calling Superclass Methods

The public members of a superclass are callable from the subclass

Format:

[super.]superclassMethod(parameters)

– Keyword super is not required (and is not standard usage) unless overriding
superclass methods

Examples:

super.toString()

super.getEmployeeID;

getEmployeeID;

Method Overriding (Page 1)

To modify the implementation of an inherited method in a subclass

Example:

public String toString()

{

return super.toString()

+ "\nHours worked: " + getHoursWorked()

+ "\nPay rate: " + getPayRate()

+ "\nGross pay: " + getGrossPay();

}

Method Overriding (Page 2)

Superclass method must be public (accessible)

– A private superclass method cannot be overridden

Methods that are static can be inherited but not overridden

– To access a “hidden” (because a method of the same name exists in the subclass)
static method in a superclass, use the class name, e.g.

SuperclassName.staticMethodName()

The @Override Annotation

Placing @Override before a subclass method denotes that the method must override
the method in the superclass

Format:

@Overrides

public type subclassMethodName()

{ …

Example:

@Overrides

public String toString()

{ …

HourlySalaryCheck.java(Page 1)

HourlySalaryCheck.java(Page 2)

HourlySalaryCheck.java(Page 3)

HourlySalaryCheck.java(Page 4)

Instantiate an HourlyPayrollCheck object

The DecimalFormat Class (Page 1)

Class used to create objects used to format numbers for output

Stored in the java.text package

import java.text.DecimalFormat;

Format:

DecimalFormat objectName = new DecimalFormat("formatString");

– formatString argument is a String of characters that specify how numbers will be
formatted

The DecimalFormat Class (Page 2)

Example 1:

DecimalFormat commaFormat = new DecimalFormat("#,##0");

The String argument "#,##0" specifies that the number will display:

– With commas at the thousands, millions, etc.

•Only if number is 1000 or greater; otherwise printing of leading zeros and
commas are from the 10’s position to the left are suppressed

– Rounded to the nearest integer

The DecimalFormat Class (Page 3)

Example 2:

DecimalFormat twoDecimals = new DecimalFormat("0.00");

The String argument "0.00" specifies that the number will display:

– At least one digit to the left of the decimal point

– Exactly two digits (rounded) to the right of the decimal point

The DecimalFormat Class (Page 4)

The functionality of Examples 1 and 2 can be combined to add commas to the two
decimals rounded:

DecimalFormat grossPayFormat = new DecimalFormat("#,##0.00");

A floating dollar sign could be inserted prior to the rest of the format string:

DecimalFormat grossPayFormat = new DecimalFormat("$#,##0.00");

The format Method

Formats a numeric value according to the DecimalFormat object's format string

Takes one variable/value (either float or double) as its single argument

Format:

decimalFormatObject.format(float/double);

Example:

JOptionPane.showMessageDialog(null, grossPayFormat.format(grossPay));

Driver1.java (Version 2) (Page 1)

Driver1.java (Version 2) (Page 2)

A PayrollLedger Hierarchy

AnnualSalaryCheck.java (Page 1)

AnnualSalaryCheck.java (Page 2)

AnnualSalaryCheck.java (Page 3)

AnnualSalaryCheck.java (Page 4)

AnnualSalaryCheck.java (Page 5)

AnnualSalaryCheck.java (Page 6)

Driver1.java (Page 2)

Extendible Classes (Page 1)

Software is extendible when it can be easily updated and reused to do something that
the original author never imagined

Extendibility is enhanced by:

– Loose coupling—few connections

– Class cohesion —classes with one single, well defined entity

– Responsibility-driven design in which classes are responsible for manipulating their
own data

Extendible Classes (Page 2)

When developing a new class, look to find a place where it can extend another class
in the existing inheritance hierarchy

Sometime superclasses in an inheritance hierarchy only serve to support subclasses

– Such superclasses are called abstract classes (never have objects instantiated from
them)

A PayrollLedger Hierarchy

MiniQuiz

Define a new class ConsultantCheck that extends from PayrollCheck for consultants
who receive a check based on a one-time payment

Consultant Check UML Diagram

MiniQuiz (Page 1)

A single data field payment of type double stores the value of the one-time payment

The no-argument constructor passes values for checkNumber, employeeID and
payment to the overloaded constructor

The ConsultantCheck Class (Page 1)

public class ConsultantCheck extends PayrollCheck

{

private double payment;

public ConsultantCheck()

{

// Implicit call to superclass Payrol

this(0, 0, 0.0);

}

The ConsultantCheck Class (Image page 1)

MiniQuiz (Page 2)

The int, int, double constructor passes:

– checkNumber and employeeID to the superclass constructor

– payment to the set method

The ConsultantCheck Class (Page 2)

public ConsultantCheck(int checkNumber,

int employeeID,

double payment)

{

// Explicit call to superclass PayrollChe

super(checkNumber, employeeID);

setPayment(payment);

}

The ConsultantCheck Class (Image page 2)

MiniQuiz (Page 3)

The set method assigns the parameter to the payment data field if that parameter is
zero (0) or greater

– Value zero (0) indicates that the payment field is empty

The ConsultantCheck Class (Page 3)

public void setPayment(double payment)

{

if (payment >= 0)

{

this.payment = payment;

}

}

The ConsultantCheck Class (Image page 3)

MiniQuiz (Page 4)

The get method returns the value of the payment data field

The getGrossPay() method returns the value of the getPayment() method

The ConsultantCheck Class (Page 4)

public double getPayment()

{

return payment;

}

public double getGrossPay()

{

return getPayment();

}

}

The ConsultantCheck Class (Image page 4)

MiniQuiz (Page 5)

The toString() method returns:

– A formatted String representation of the grossPay data field formatted to dollars
and cents including text labels

– Preceded by the checkNumber and employeeID data fields from a call to toString()
method of superclass PayrollCheck

The ConsultantCheck Class (Page 5)

public String toString()

{

return super.toString()

+ "\nPayment: "

+ dollarsCents.format(

getGrossPay());

}

}

The ConsultantCheck Class (Image page 5)

Driver1.java (Page 2)

The Class Object (Page 1)

The superclass of all classes (either direct or indirect) is Object from the Java API …

– If a class definition does not explicitly extend another class, it extends Object
directly

The following two class headers effectively are identical:

public class PayrollCheck {

public class PayrollCheck extends Object

{

The Class Object (Page 2)

As a result all classes inherit eleven (11) public methods from Object including:

– toString(), equals() and hashCode()

Additionally classes from the Java API use inheritance extensively and extend also
from class Object (directly or indirectly)

A PayrollLedger Hierarchy

PayrollCheck.java (Page 1)

The toString() Method of Class Object

Method toString() is a member of class Object that returns a String representation of
an object

All classes inherit the toString() method either directly or indirectly from Object

– May be called or overridden

Returns the class name of which the object is an instance and a hash code (start
address where the object is stored in memory in hexadecimal), e.g.

– HourlySalaryCheck@15037e5

PayrollCheck.java (Object.toString() —Page 5)

Advantages of Inheritance (so far)

Avoiding code duplication

Code reuse

Easier maintenance

Extendibility

Subtyping (Page 1)

Types defined by a subclass definition actually are subtypes of their superclass

If HourlySalaryCheck and AnnualSalaryCheck classes are extensions of class
PayrollCheck:

– The superclass object:

PayrollCheck pay;

– Can be instantiated by calling its subtype constructor:

pay = new AnnualSalaryCheck();

– Or in a single statement:

PayrollCheck pay = new AnnualSalaryCheck();

Subtyping (Page 2)

Now the subtyped object can differentiate between getGrossPay() methods of
HourlySalaryCheck and AnnualSalaryCheck classes when called:

JOptionPane.showMessageDialog(null, pay.getGrossPay());

– This is an example of polymorphism (meaning “many shapes” or “many forms”)

– In this case the method behavior changes based upon which constructor was used
to instantiate it

Driver2.java (Page 1)

Driver2.java (Page 2)

The ArrayList Class (Page 1)

Used to create a list of items in a flexible-sized collection

The capacity of an ArrayList object is initialized to start at ten (10) elements but
grows as items are added to it

The ArrayList Class (Page 2)

The class has a whole series of methods of its own which can be used to
automatically manipulate objects instantiated from it

Found in the java.util package of the Java API library:

import java.util.ArrayList;

The ArrayList Class (Page 3)

Format to declare an ArrayList object:

ArrayList<type> objectName;

Example:

private ArrayList<String> departmentList;

– ArrayList is a generic class requiring a subtype specified as a parameter

– Enclosed in <chevrons>, e.g. <angle brackets>

– The example data field above departmentList is called an “ArrayList of Strings”

Instantiating ArrayList Objects (Page 1)

Similar syntax to that which is used when instantiating objects …

– Includes the second type parameter enclosed in <chevrons>

Format:

objectName = new ArrayList<type>();

Example:

departmentList = new ArrayList<String>();

Instantiating ArrayList Objects (Page 2)

Format to declare and instantiate the object in a single statement:

ArrayList<type> objectName = new ArrayList<type>();

Example:

ArrayList<String> departmentList = new ArrayList<String>();

The add() Method for ArrayList

Appends this element (object) to the end of the ArrayList collection

Format:

arrayListObject.add(object);

– The object represents the value added as a new element to the ArrayList collection

Example:

departmentList.add("COMPUTER");

The size() Method for ArrayList

Returns an int which is the number of elements in the ArrayList collection

Format:

arrayListObject.size()

Example:

JOptionPane.showMessageDialog(null, departmentList.size());

The get() Method for ArrayList

Retrieves an individual element from the specified position in ArrayList collection

Format:

arrayListObject.get(index)

– The index is an int between zero (0) and one less than the number of items in the
ArrayList

Example:

JOptionPane.showMessageDialog(null, departmentList.get(index));

– The element is not removed from the collection

The indexOf() Method for ArrayList (Page 1)

Searches for first occurrence of the object argument in the ArrayList collection—tests
for an equal to (==) condition

The method returns either :

– An int which is the index representing its position in the ArrayList collection

– Or -1 if the search criteria value is not found

The indexOf() Method for ArrayList (Page 2)

Format:

arrayListObject.indexOf(object)

Example:

index = departmentList.indexOf("COMPUTER");

The remove() Method for ArrayList (Page 1)

Deletes an individual element from the specified position in ArrayList collection

All elements after the deleted item move up one element to fill the gap

The remove() Method for ArrayList (Page 2)

Format:

arrayListObject.remove(index);

The index is an integer between zero (0) and one less than the number of elements
in the ArrayList

Example:

departmentList.remove(index);

MiniQuiz No. 2 (Page 1)

Open the “college” project and create a new class Alum that extends from
CommunityMember

There are two data fields:

– gradYear—the year the alumnus or alumna graduated

– degree—the degree granted to the alumnus or alumna

An ArrayList of Strings stores valid degrees including “B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”

Alum.java (Page 1)

MiniQuiz No. 2 (Page 2)

The constructor:

– Takes two Strings for firstName and lastName, an int for gradYear and a String for
degree

– Passes firstName and lastName to the superclass constructor

– Instantiates the ArrayList and assigns the values (“B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”)

– Calls the set methods for gradYear and degree

Alum.java (Page 2)

MiniQuiz No. 2 (Page 3)

The set method for gradYear updates the data field if the parameter is between 1960
and 2013, or is zero (0) meaning is not set

The set method for degree updates the data field if the parameter is in the degrees
ArrayList

Include get methods for gradYear and degree

The toString() method links to the toString() of CommunityMember and includes
labels before the return values of the two get methods

Alum.java (Page 3)

Alum.java (Page 4)

Alum.java (Page 5)

Alum.java (Page 6)

1

2

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

Objected-Oriented and Inheritance

CST141

OOP

Object-Oriented Programming is characterized by three features:

– Encapsulation

– Inheritance

•New classes created from (extends) existing classes by absorbing (inheriting)
their attributes/properties (instance variables) and behaviors (methods)

– Polymorphism

•The ability of an object to take on many forms; a common use occurs in OOP
when a parent class reference is used to refer to a child class object

AnnualSalaryCheck and HourlySalaryCheck Classes without Inheritance

AnnualSalaryCheck

- checkNumber

- employeeID

- annualSalary

+ setCheckNumber()

+ setEmployeeID()

+ setAnnualSalary()

+ getCheckNumber()

+ getEmployeeID()

+ getAnnualSalary()

+ getGrossPay()

HourlySalaryCheck

- checkNumber

- employeeID

- hoursWorked

- payRate

+ setCheckNumber()

+ setEmployeeID()

+ setHoursWorked()

+ setPayRate()

+ getCheckNumber()

+ getEmployeeID()

+ getHoursWorked()

+ getPayRate()

+ getGrossPay()

Code Duplication without Inheritance

Classes that operate on similar entities often have many identical elements

– Makes maintenance difficult/more work

– Introduces danger of bugs through incorrect maintenance

Code duplication also can carry over introducing problems to the driver classes

Inheritance

When a new class is created, it inherits the instance variables and methods of any
previously defined superclass

This subclass gets its initial features from the direct superclass

An indirect superclass is inherited from two or more levels above in a class hierarchy

The Subclass

The subclass is usually larger than its superclass …

– Because it adds instance variables and methods of its own to those of the
superclass

– Also it is possible to define additions to, or replacements for, inherited superclass
features

It is more specific than the superclass …

– Therefore it has a smaller number of situations in which it can be used

The Superclass

Each superclass exists at the top of a hierarchical relationship with its subclasses

A superclass may have several direct subclasses which inherit its features

A subclass to one superclass may be a superclass to other subclasses

A Payroll Hierarchy

A College Inheritance Hierarchy

“Has a …” vs. “Is a …”

These two phrases that express the nature of relationships and class attributes
between superclasses and subclasses in inheritance:

– A class to its own attributes (“has a”)

– A subclass to the superclass from which it inherits additional attributes (“is a”)

“Has a …” Relationships

“Has a” relationship expresses the attributes (instance variables) within the class
(called composition)

A class “has a(n)” attribute, i.e.

– HourlySalaryCheck “has an” HoursWorked, “has a” Pay Rate

– CommunityMember “has a” First Name, “has a” Last Name, “has an” Address, etc.

“Is a …” Relationships

“Is a” relationship expresses inheritance

Subclass “is a” superclass, i.e.

– AnnualSalaryCheck “is a” PayrollCheck

•And has all the attributes of a PayrollCheck, i.e. if PayrollCheck “has a” Check
Number attribute, AnnualSalaryCheck does also

– Teacher “is a” Faculty

•And has all the attributes of a Faculty member, i.e. if Faculty “has a” Rank
attribute, Teacher does also

Class Libraries (Page 1)

New classes inherit features from an organization's own class library

When developing a new class:

– First try to find a place for it in the existing inheritance hierarchy

– Only if it does not fit into the current class library structure should it be the
beginning of a new inheritance hierarchy segment

Class Libraries (Page 2)

Java API uses inheritance to build its vast library collection of classes

A Payroll Hierarchy

PayrollCheck, AnnualSalaryCheck and HourlySalaryCheck Classes with
Inheritance

AnnualSalaryCheck

annualSalary

setAnnualSalary()

getAnnualSalary()

getGrossPay()

HourlySalaryCheck

hoursWorked

payRate

setHoursWorked()

setPayRate()

getHoursWorked()

getPayRate()

getGrossPay()

PayrollCheck.java (Page 1)

PayrollCheck.java (Page 2)

PayrollCheck.java (Page 3)

PayrollCheck.java (Page 4)

PayrollCheck.java (Page 5)

A PayrollLedger Hierarchy

The Keyword extends (Page 1)

Declares that this class is a direct subclass of the superclass that is named following
the keyword extends

The class inherits all public and protected members (instance variables and methods)
of the superclass

A class may extend (inherit) directly only from one class (its direct superclass)

The Keyword extends (Page 2)

Format:

public class SubClassName extends DirectSuperClassName {

Examples:

public class HourlySalaryCheck extends PayrollCheck {

public class Faculty extends Employee {

Superclass Constructor Call (Page 1)

Subclass constructors always must contain a call to “super” (to its direct superclass
constructor method), or ...

If none is written, the compiler inserts one (an implicit call without parameters)

– Works only if superclass has a constructor without parameters

Superclass Constructor Call (Page 2)

Must be the first statement in the body of the subclass constructor

Example:

public AnnualSalaryCheck(int checkNumber, int employeeID, double annualSalary)

{

super(checkNumber, employeeID);

setAnnualSalary(annualSalary);

}

Calling Superclass Methods

The public members of a superclass are callable from the subclass

Format:

[super.]superclassMethod(parameters)

– Keyword super is not required (and is not standard usage) unless overriding
superclass methods

Examples:

super.toString()

super.getEmployeeID;

getEmployeeID;

Method Overriding (Page 1)

To modify the implementation of an inherited method in a subclass

Example:

public String toString()

{

return super.toString()

+ "\nHours worked: " + getHoursWorked()

+ "\nPay rate: " + getPayRate()

+ "\nGross pay: " + getGrossPay();

}

Method Overriding (Page 2)

Superclass method must be public (accessible)

– A private superclass method cannot be overridden

Methods that are static can be inherited but not overridden

– To access a “hidden” (because a method of the same name exists in the subclass)
static method in a superclass, use the class name, e.g.

SuperclassName.staticMethodName()

The @Override Annotation

Placing @Override before a subclass method denotes that the method must override
the method in the superclass

Format:

@Overrides

public type subclassMethodName()

{ …

Example:

@Overrides

public String toString()

{ …

HourlySalaryCheck.java(Page 1)

HourlySalaryCheck.java(Page 2)

HourlySalaryCheck.java(Page 3)

HourlySalaryCheck.java(Page 4)

Instantiate an HourlyPayrollCheck object

The DecimalFormat Class (Page 1)

Class used to create objects used to format numbers for output

Stored in the java.text package

import java.text.DecimalFormat;

Format:

DecimalFormat objectName = new DecimalFormat("formatString");

– formatString argument is a String of characters that specify how numbers will be
formatted

The DecimalFormat Class (Page 2)

Example 1:

DecimalFormat commaFormat = new DecimalFormat("#,##0");

The String argument "#,##0" specifies that the number will display:

– With commas at the thousands, millions, etc.

•Only if number is 1000 or greater; otherwise printing of leading zeros and
commas are from the 10’s position to the left are suppressed

– Rounded to the nearest integer

The DecimalFormat Class (Page 3)

Example 2:

DecimalFormat twoDecimals = new DecimalFormat("0.00");

The String argument "0.00" specifies that the number will display:

– At least one digit to the left of the decimal point

– Exactly two digits (rounded) to the right of the decimal point

The DecimalFormat Class (Page 4)

The functionality of Examples 1 and 2 can be combined to add commas to the two
decimals rounded:

DecimalFormat grossPayFormat = new DecimalFormat("#,##0.00");

A floating dollar sign could be inserted prior to the rest of the format string:

DecimalFormat grossPayFormat = new DecimalFormat("$#,##0.00");

The format Method

Formats a numeric value according to the DecimalFormat object's format string

Takes one variable/value (either float or double) as its single argument

Format:

decimalFormatObject.format(float/double);

Example:

JOptionPane.showMessageDialog(null, grossPayFormat.format(grossPay));

Driver1.java (Version 2) (Page 1)

Driver1.java (Version 2) (Page 2)

A PayrollLedger Hierarchy

AnnualSalaryCheck.java (Page 1)

AnnualSalaryCheck.java (Page 2)

AnnualSalaryCheck.java (Page 3)

AnnualSalaryCheck.java (Page 4)

AnnualSalaryCheck.java (Page 5)

AnnualSalaryCheck.java (Page 6)

Driver1.java (Page 2)

Extendible Classes (Page 1)

Software is extendible when it can be easily updated and reused to do something that
the original author never imagined

Extendibility is enhanced by:

– Loose coupling—few connections

– Class cohesion —classes with one single, well defined entity

– Responsibility-driven design in which classes are responsible for manipulating their
own data

Extendible Classes (Page 2)

When developing a new class, look to find a place where it can extend another class
in the existing inheritance hierarchy

Sometime superclasses in an inheritance hierarchy only serve to support subclasses

– Such superclasses are called abstract classes (never have objects instantiated from
them)

A PayrollLedger Hierarchy

MiniQuiz

Define a new class ConsultantCheck that extends from PayrollCheck for consultants
who receive a check based on a one-time payment

Consultant Check UML Diagram

MiniQuiz (Page 1)

A single data field payment of type double stores the value of the one-time payment

The no-argument constructor passes values for checkNumber, employeeID and
payment to the overloaded constructor

The ConsultantCheck Class (Page 1)

public class ConsultantCheck extends PayrollCheck

{

private double payment;

public ConsultantCheck()

{

// Implicit call to superclass Payrol

this(0, 0, 0.0);

}

The ConsultantCheck Class (Image page 1)

MiniQuiz (Page 2)

The int, int, double constructor passes:

– checkNumber and employeeID to the superclass constructor

– payment to the set method

The ConsultantCheck Class (Page 2)

public ConsultantCheck(int checkNumber,

int employeeID,

double payment)

{

// Explicit call to superclass PayrollChe

super(checkNumber, employeeID);

setPayment(payment);

}

The ConsultantCheck Class (Image page 2)

MiniQuiz (Page 3)

The set method assigns the parameter to the payment data field if that parameter is
zero (0) or greater

– Value zero (0) indicates that the payment field is empty

The ConsultantCheck Class (Page 3)

public void setPayment(double payment)

{

if (payment >= 0)

{

this.payment = payment;

}

}

The ConsultantCheck Class (Image page 3)

MiniQuiz (Page 4)

The get method returns the value of the payment data field

The getGrossPay() method returns the value of the getPayment() method

The ConsultantCheck Class (Page 4)

public double getPayment()

{

return payment;

}

public double getGrossPay()

{

return getPayment();

}

}

The ConsultantCheck Class (Image page 4)

MiniQuiz (Page 5)

The toString() method returns:

– A formatted String representation of the grossPay data field formatted to dollars
and cents including text labels

– Preceded by the checkNumber and employeeID data fields from a call to toString()
method of superclass PayrollCheck

The ConsultantCheck Class (Page 5)

public String toString()

{

return super.toString()

+ "\nPayment: "

+ dollarsCents.format(

getGrossPay());

}

}

The ConsultantCheck Class (Image page 5)

Driver1.java (Page 2)

The Class Object (Page 1)

The superclass of all classes (either direct or indirect) is Object from the Java API …

– If a class definition does not explicitly extend another class, it extends Object
directly

The following two class headers effectively are identical:

public class PayrollCheck {

public class PayrollCheck extends Object

{

The Class Object (Page 2)

As a result all classes inherit eleven (11) public methods from Object including:

– toString(), equals() and hashCode()

Additionally classes from the Java API use inheritance extensively and extend also
from class Object (directly or indirectly)

A PayrollLedger Hierarchy

PayrollCheck.java (Page 1)

The toString() Method of Class Object

Method toString() is a member of class Object that returns a String representation of
an object

All classes inherit the toString() method either directly or indirectly from Object

– May be called or overridden

Returns the class name of which the object is an instance and a hash code (start
address where the object is stored in memory in hexadecimal), e.g.

– HourlySalaryCheck@15037e5

PayrollCheck.java (Object.toString() —Page 5)

Advantages of Inheritance (so far)

Avoiding code duplication

Code reuse

Easier maintenance

Extendibility

Subtyping (Page 1)

Types defined by a subclass definition actually are subtypes of their superclass

If HourlySalaryCheck and AnnualSalaryCheck classes are extensions of class
PayrollCheck:

– The superclass object:

PayrollCheck pay;

– Can be instantiated by calling its subtype constructor:

pay = new AnnualSalaryCheck();

– Or in a single statement:

PayrollCheck pay = new AnnualSalaryCheck();

Subtyping (Page 2)

Now the subtyped object can differentiate between getGrossPay() methods of
HourlySalaryCheck and AnnualSalaryCheck classes when called:

JOptionPane.showMessageDialog(null, pay.getGrossPay());

– This is an example of polymorphism (meaning “many shapes” or “many forms”)

– In this case the method behavior changes based upon which constructor was used
to instantiate it

Driver2.java (Page 1)

Driver2.java (Page 2)

The ArrayList Class (Page 1)

Used to create a list of items in a flexible-sized collection

The capacity of an ArrayList object is initialized to start at ten (10) elements but
grows as items are added to it

The ArrayList Class (Page 2)

The class has a whole series of methods of its own which can be used to
automatically manipulate objects instantiated from it

Found in the java.util package of the Java API library:

import java.util.ArrayList;

The ArrayList Class (Page 3)

Format to declare an ArrayList object:

ArrayList<type> objectName;

Example:

private ArrayList<String> departmentList;

– ArrayList is a generic class requiring a subtype specified as a parameter

– Enclosed in <chevrons>, e.g. <angle brackets>

– The example data field above departmentList is called an “ArrayList of Strings”

Instantiating ArrayList Objects (Page 1)

Similar syntax to that which is used when instantiating objects …

– Includes the second type parameter enclosed in <chevrons>

Format:

objectName = new ArrayList<type>();

Example:

departmentList = new ArrayList<String>();

Instantiating ArrayList Objects (Page 2)

Format to declare and instantiate the object in a single statement:

ArrayList<type> objectName = new ArrayList<type>();

Example:

ArrayList<String> departmentList = new ArrayList<String>();

The add() Method for ArrayList

Appends this element (object) to the end of the ArrayList collection

Format:

arrayListObject.add(object);

– The object represents the value added as a new element to the ArrayList collection

Example:

departmentList.add("COMPUTER");

The size() Method for ArrayList

Returns an int which is the number of elements in the ArrayList collection

Format:

arrayListObject.size()

Example:

JOptionPane.showMessageDialog(null, departmentList.size());

The get() Method for ArrayList

Retrieves an individual element from the specified position in ArrayList collection

Format:

arrayListObject.get(index)

– The index is an int between zero (0) and one less than the number of items in the
ArrayList

Example:

JOptionPane.showMessageDialog(null, departmentList.get(index));

– The element is not removed from the collection

The indexOf() Method for ArrayList (Page 1)

Searches for first occurrence of the object argument in the ArrayList collection—tests
for an equal to (==) condition

The method returns either :

– An int which is the index representing its position in the ArrayList collection

– Or -1 if the search criteria value is not found

The indexOf() Method for ArrayList (Page 2)

Format:

arrayListObject.indexOf(object)

Example:

index = departmentList.indexOf("COMPUTER");

The remove() Method for ArrayList (Page 1)

Deletes an individual element from the specified position in ArrayList collection

All elements after the deleted item move up one element to fill the gap

The remove() Method for ArrayList (Page 2)

Format:

arrayListObject.remove(index);

The index is an integer between zero (0) and one less than the number of elements
in the ArrayList

Example:

departmentList.remove(index);

MiniQuiz No. 2 (Page 1)

Open the “college” project and create a new class Alum that extends from
CommunityMember

There are two data fields:

– gradYear—the year the alumnus or alumna graduated

– degree—the degree granted to the alumnus or alumna

An ArrayList of Strings stores valid degrees including “B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”

Alum.java (Page 1)

MiniQuiz No. 2 (Page 2)

The constructor:

– Takes two Strings for firstName and lastName, an int for gradYear and a String for
degree

– Passes firstName and lastName to the superclass constructor

– Instantiates the ArrayList and assigns the values (“B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”)

– Calls the set methods for gradYear and degree

Alum.java (Page 2)

MiniQuiz No. 2 (Page 3)

The set method for gradYear updates the data field if the parameter is between 1960
and 2013, or is zero (0) meaning is not set

The set method for degree updates the data field if the parameter is in the degrees
ArrayList

Include get methods for gradYear and degree

The toString() method links to the toString() of CommunityMember and includes
labels before the return values of the two get methods

Alum.java (Page 3)

Alum.java (Page 4)

Alum.java (Page 5)

Alum.java (Page 6)

1

2

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

CST141--Inheritance Page 6

Objected-Oriented and Inheritance

CST141

OOP

Object-Oriented Programming is characterized by three features:

– Encapsulation

– Inheritance

•New classes created from (extends) existing classes by absorbing (inheriting)
their attributes/properties (instance variables) and behaviors (methods)

– Polymorphism

•The ability of an object to take on many forms; a common use occurs in OOP
when a parent class reference is used to refer to a child class object

AnnualSalaryCheck and HourlySalaryCheck Classes without Inheritance

AnnualSalaryCheck

- checkNumber

- employeeID

- annualSalary

+ setCheckNumber()

+ setEmployeeID()

+ setAnnualSalary()

+ getCheckNumber()

+ getEmployeeID()

+ getAnnualSalary()

+ getGrossPay()

HourlySalaryCheck

- checkNumber

- employeeID

- hoursWorked

- payRate

+ setCheckNumber()

+ setEmployeeID()

+ setHoursWorked()

+ setPayRate()

+ getCheckNumber()

+ getEmployeeID()

+ getHoursWorked()

+ getPayRate()

+ getGrossPay()

Code Duplication without Inheritance

Classes that operate on similar entities often have many identical elements

– Makes maintenance difficult/more work

– Introduces danger of bugs through incorrect maintenance

Code duplication also can carry over introducing problems to the driver classes

Inheritance

When a new class is created, it inherits the instance variables and methods of any
previously defined superclass

This subclass gets its initial features from the direct superclass

An indirect superclass is inherited from two or more levels above in a class hierarchy

The Subclass

The subclass is usually larger than its superclass …

– Because it adds instance variables and methods of its own to those of the
superclass

– Also it is possible to define additions to, or replacements for, inherited superclass
features

It is more specific than the superclass …

– Therefore it has a smaller number of situations in which it can be used

The Superclass

Each superclass exists at the top of a hierarchical relationship with its subclasses

A superclass may have several direct subclasses which inherit its features

A subclass to one superclass may be a superclass to other subclasses

A Payroll Hierarchy

A College Inheritance Hierarchy

“Has a …” vs. “Is a …”

These two phrases that express the nature of relationships and class attributes
between superclasses and subclasses in inheritance:

– A class to its own attributes (“has a”)

– A subclass to the superclass from which it inherits additional attributes (“is a”)

“Has a …” Relationships

“Has a” relationship expresses the attributes (instance variables) within the class
(called composition)

A class “has a(n)” attribute, i.e.

– HourlySalaryCheck “has an” HoursWorked, “has a” Pay Rate

– CommunityMember “has a” First Name, “has a” Last Name, “has an” Address, etc.

“Is a …” Relationships

“Is a” relationship expresses inheritance

Subclass “is a” superclass, i.e.

– AnnualSalaryCheck “is a” PayrollCheck

•And has all the attributes of a PayrollCheck, i.e. if PayrollCheck “has a” Check
Number attribute, AnnualSalaryCheck does also

– Teacher “is a” Faculty

•And has all the attributes of a Faculty member, i.e. if Faculty “has a” Rank
attribute, Teacher does also

Class Libraries (Page 1)

New classes inherit features from an organization's own class library

When developing a new class:

– First try to find a place for it in the existing inheritance hierarchy

– Only if it does not fit into the current class library structure should it be the
beginning of a new inheritance hierarchy segment

Class Libraries (Page 2)

Java API uses inheritance to build its vast library collection of classes

A Payroll Hierarchy

PayrollCheck, AnnualSalaryCheck and HourlySalaryCheck Classes with
Inheritance

AnnualSalaryCheck

annualSalary

setAnnualSalary()

getAnnualSalary()

getGrossPay()

HourlySalaryCheck

hoursWorked

payRate

setHoursWorked()

setPayRate()

getHoursWorked()

getPayRate()

getGrossPay()

PayrollCheck.java (Page 1)

PayrollCheck.java (Page 2)

PayrollCheck.java (Page 3)

PayrollCheck.java (Page 4)

PayrollCheck.java (Page 5)

A PayrollLedger Hierarchy

The Keyword extends (Page 1)

Declares that this class is a direct subclass of the superclass that is named following
the keyword extends

The class inherits all public and protected members (instance variables and methods)
of the superclass

A class may extend (inherit) directly only from one class (its direct superclass)

The Keyword extends (Page 2)

Format:

public class SubClassName extends DirectSuperClassName {

Examples:

public class HourlySalaryCheck extends PayrollCheck {

public class Faculty extends Employee {

Superclass Constructor Call (Page 1)

Subclass constructors always must contain a call to “super” (to its direct superclass
constructor method), or ...

If none is written, the compiler inserts one (an implicit call without parameters)

– Works only if superclass has a constructor without parameters

Superclass Constructor Call (Page 2)

Must be the first statement in the body of the subclass constructor

Example:

public AnnualSalaryCheck(int checkNumber, int employeeID, double annualSalary)

{

super(checkNumber, employeeID);

setAnnualSalary(annualSalary);

}

Calling Superclass Methods

The public members of a superclass are callable from the subclass

Format:

[super.]superclassMethod(parameters)

– Keyword super is not required (and is not standard usage) unless overriding
superclass methods

Examples:

super.toString()

super.getEmployeeID;

getEmployeeID;

Method Overriding (Page 1)

To modify the implementation of an inherited method in a subclass

Example:

public String toString()

{

return super.toString()

+ "\nHours worked: " + getHoursWorked()

+ "\nPay rate: " + getPayRate()

+ "\nGross pay: " + getGrossPay();

}

Method Overriding (Page 2)

Superclass method must be public (accessible)

– A private superclass method cannot be overridden

Methods that are static can be inherited but not overridden

– To access a “hidden” (because a method of the same name exists in the subclass)
static method in a superclass, use the class name, e.g.

SuperclassName.staticMethodName()

The @Override Annotation

Placing @Override before a subclass method denotes that the method must override
the method in the superclass

Format:

@Overrides

public type subclassMethodName()

{ …

Example:

@Overrides

public String toString()

{ …

HourlySalaryCheck.java(Page 1)

HourlySalaryCheck.java(Page 2)

HourlySalaryCheck.java(Page 3)

HourlySalaryCheck.java(Page 4)

Instantiate an HourlyPayrollCheck object

The DecimalFormat Class (Page 1)

Class used to create objects used to format numbers for output

Stored in the java.text package

import java.text.DecimalFormat;

Format:

DecimalFormat objectName = new DecimalFormat("formatString");

– formatString argument is a String of characters that specify how numbers will be
formatted

The DecimalFormat Class (Page 2)

Example 1:

DecimalFormat commaFormat = new DecimalFormat("#,##0");

The String argument "#,##0" specifies that the number will display:

– With commas at the thousands, millions, etc.

•Only if number is 1000 or greater; otherwise printing of leading zeros and
commas are from the 10’s position to the left are suppressed

– Rounded to the nearest integer

The DecimalFormat Class (Page 3)

Example 2:

DecimalFormat twoDecimals = new DecimalFormat("0.00");

The String argument "0.00" specifies that the number will display:

– At least one digit to the left of the decimal point

– Exactly two digits (rounded) to the right of the decimal point

The DecimalFormat Class (Page 4)

The functionality of Examples 1 and 2 can be combined to add commas to the two
decimals rounded:

DecimalFormat grossPayFormat = new DecimalFormat("#,##0.00");

A floating dollar sign could be inserted prior to the rest of the format string:

DecimalFormat grossPayFormat = new DecimalFormat("$#,##0.00");

The format Method

Formats a numeric value according to the DecimalFormat object's format string

Takes one variable/value (either float or double) as its single argument

Format:

decimalFormatObject.format(float/double);

Example:

JOptionPane.showMessageDialog(null, grossPayFormat.format(grossPay));

Driver1.java (Version 2) (Page 1)

Driver1.java (Version 2) (Page 2)

A PayrollLedger Hierarchy

AnnualSalaryCheck.java (Page 1)

AnnualSalaryCheck.java (Page 2)

AnnualSalaryCheck.java (Page 3)

AnnualSalaryCheck.java (Page 4)

AnnualSalaryCheck.java (Page 5)

AnnualSalaryCheck.java (Page 6)

Driver1.java (Page 2)

Extendible Classes (Page 1)

Software is extendible when it can be easily updated and reused to do something that
the original author never imagined

Extendibility is enhanced by:

– Loose coupling—few connections

– Class cohesion —classes with one single, well defined entity

– Responsibility-driven design in which classes are responsible for manipulating their
own data

Extendible Classes (Page 2)

When developing a new class, look to find a place where it can extend another class
in the existing inheritance hierarchy

Sometime superclasses in an inheritance hierarchy only serve to support subclasses

– Such superclasses are called abstract classes (never have objects instantiated from
them)

A PayrollLedger Hierarchy

MiniQuiz

Define a new class ConsultantCheck that extends from PayrollCheck for consultants
who receive a check based on a one-time payment

Consultant Check UML Diagram

MiniQuiz (Page 1)

A single data field payment of type double stores the value of the one-time payment

The no-argument constructor passes values for checkNumber, employeeID and
payment to the overloaded constructor

The ConsultantCheck Class (Page 1)

public class ConsultantCheck extends PayrollCheck

{

private double payment;

public ConsultantCheck()

{

// Implicit call to superclass Payrol

this(0, 0, 0.0);

}

The ConsultantCheck Class (Image page 1)

MiniQuiz (Page 2)

The int, int, double constructor passes:

– checkNumber and employeeID to the superclass constructor

– payment to the set method

The ConsultantCheck Class (Page 2)

public ConsultantCheck(int checkNumber,

int employeeID,

double payment)

{

// Explicit call to superclass PayrollChe

super(checkNumber, employeeID);

setPayment(payment);

}

The ConsultantCheck Class (Image page 2)

MiniQuiz (Page 3)

The set method assigns the parameter to the payment data field if that parameter is
zero (0) or greater

– Value zero (0) indicates that the payment field is empty

The ConsultantCheck Class (Page 3)

public void setPayment(double payment)

{

if (payment >= 0)

{

this.payment = payment;

}

}

The ConsultantCheck Class (Image page 3)

MiniQuiz (Page 4)

The get method returns the value of the payment data field

The getGrossPay() method returns the value of the getPayment() method

The ConsultantCheck Class (Page 4)

public double getPayment()

{

return payment;

}

public double getGrossPay()

{

return getPayment();

}

}

The ConsultantCheck Class (Image page 4)

MiniQuiz (Page 5)

The toString() method returns:

– A formatted String representation of the grossPay data field formatted to dollars
and cents including text labels

– Preceded by the checkNumber and employeeID data fields from a call to toString()
method of superclass PayrollCheck

The ConsultantCheck Class (Page 5)

public String toString()

{

return super.toString()

+ "\nPayment: "

+ dollarsCents.format(

getGrossPay());

}

}

The ConsultantCheck Class (Image page 5)

Driver1.java (Page 2)

The Class Object (Page 1)

The superclass of all classes (either direct or indirect) is Object from the Java API …

– If a class definition does not explicitly extend another class, it extends Object
directly

The following two class headers effectively are identical:

public class PayrollCheck {

public class PayrollCheck extends Object

{

The Class Object (Page 2)

As a result all classes inherit eleven (11) public methods from Object including:

– toString(), equals() and hashCode()

Additionally classes from the Java API use inheritance extensively and extend also
from class Object (directly or indirectly)

A PayrollLedger Hierarchy

PayrollCheck.java (Page 1)

The toString() Method of Class Object

Method toString() is a member of class Object that returns a String representation of
an object

All classes inherit the toString() method either directly or indirectly from Object

– May be called or overridden

Returns the class name of which the object is an instance and a hash code (start
address where the object is stored in memory in hexadecimal), e.g.

– HourlySalaryCheck@15037e5

PayrollCheck.java (Object.toString() —Page 5)

Advantages of Inheritance (so far)

Avoiding code duplication

Code reuse

Easier maintenance

Extendibility

Subtyping (Page 1)

Types defined by a subclass definition actually are subtypes of their superclass

If HourlySalaryCheck and AnnualSalaryCheck classes are extensions of class
PayrollCheck:

– The superclass object:

PayrollCheck pay;

– Can be instantiated by calling its subtype constructor:

pay = new AnnualSalaryCheck();

– Or in a single statement:

PayrollCheck pay = new AnnualSalaryCheck();

Subtyping (Page 2)

Now the subtyped object can differentiate between getGrossPay() methods of
HourlySalaryCheck and AnnualSalaryCheck classes when called:

JOptionPane.showMessageDialog(null, pay.getGrossPay());

– This is an example of polymorphism (meaning “many shapes” or “many forms”)

– In this case the method behavior changes based upon which constructor was used
to instantiate it

Driver2.java (Page 1)

Driver2.java (Page 2)

The ArrayList Class (Page 1)

Used to create a list of items in a flexible-sized collection

The capacity of an ArrayList object is initialized to start at ten (10) elements but
grows as items are added to it

The ArrayList Class (Page 2)

The class has a whole series of methods of its own which can be used to
automatically manipulate objects instantiated from it

Found in the java.util package of the Java API library:

import java.util.ArrayList;

The ArrayList Class (Page 3)

Format to declare an ArrayList object:

ArrayList<type> objectName;

Example:

private ArrayList<String> departmentList;

– ArrayList is a generic class requiring a subtype specified as a parameter

– Enclosed in <chevrons>, e.g. <angle brackets>

– The example data field above departmentList is called an “ArrayList of Strings”

Instantiating ArrayList Objects (Page 1)

Similar syntax to that which is used when instantiating objects …

– Includes the second type parameter enclosed in <chevrons>

Format:

objectName = new ArrayList<type>();

Example:

departmentList = new ArrayList<String>();

Instantiating ArrayList Objects (Page 2)

Format to declare and instantiate the object in a single statement:

ArrayList<type> objectName = new ArrayList<type>();

Example:

ArrayList<String> departmentList = new ArrayList<String>();

The add() Method for ArrayList

Appends this element (object) to the end of the ArrayList collection

Format:

arrayListObject.add(object);

– The object represents the value added as a new element to the ArrayList collection

Example:

departmentList.add("COMPUTER");

The size() Method for ArrayList

Returns an int which is the number of elements in the ArrayList collection

Format:

arrayListObject.size()

Example:

JOptionPane.showMessageDialog(null, departmentList.size());

The get() Method for ArrayList

Retrieves an individual element from the specified position in ArrayList collection

Format:

arrayListObject.get(index)

– The index is an int between zero (0) and one less than the number of items in the
ArrayList

Example:

JOptionPane.showMessageDialog(null, departmentList.get(index));

– The element is not removed from the collection

The indexOf() Method for ArrayList (Page 1)

Searches for first occurrence of the object argument in the ArrayList collection—tests
for an equal to (==) condition

The method returns either :

– An int which is the index representing its position in the ArrayList collection

– Or -1 if the search criteria value is not found

The indexOf() Method for ArrayList (Page 2)

Format:

arrayListObject.indexOf(object)

Example:

index = departmentList.indexOf("COMPUTER");

The remove() Method for ArrayList (Page 1)

Deletes an individual element from the specified position in ArrayList collection

All elements after the deleted item move up one element to fill the gap

The remove() Method for ArrayList (Page 2)

Format:

arrayListObject.remove(index);

The index is an integer between zero (0) and one less than the number of elements
in the ArrayList

Example:

departmentList.remove(index);

MiniQuiz No. 2 (Page 1)

Open the “college” project and create a new class Alum that extends from
CommunityMember

There are two data fields:

– gradYear—the year the alumnus or alumna graduated

– degree—the degree granted to the alumnus or alumna

An ArrayList of Strings stores valid degrees including “B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”

Alum.java (Page 1)

MiniQuiz No. 2 (Page 2)

The constructor:

– Takes two Strings for firstName and lastName, an int for gradYear and a String for
degree

– Passes firstName and lastName to the superclass constructor

– Instantiates the ArrayList and assigns the values (“B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”)

– Calls the set methods for gradYear and degree

Alum.java (Page 2)

MiniQuiz No. 2 (Page 3)

The set method for gradYear updates the data field if the parameter is between 1960
and 2013, or is zero (0) meaning is not set

The set method for degree updates the data field if the parameter is in the degrees
ArrayList

Include get methods for gradYear and degree

The toString() method links to the toString() of CommunityMember and includes
labels before the return values of the two get methods

Alum.java (Page 3)

Alum.java (Page 4)

Alum.java (Page 5)

Alum.java (Page 6)

1

2

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

CST141--Inheritance Page 7

Objected-Oriented and Inheritance

CST141

OOP

Object-Oriented Programming is characterized by three features:

– Encapsulation

– Inheritance

•New classes created from (extends) existing classes by absorbing (inheriting)
their attributes/properties (instance variables) and behaviors (methods)

– Polymorphism

•The ability of an object to take on many forms; a common use occurs in OOP
when a parent class reference is used to refer to a child class object

AnnualSalaryCheck and HourlySalaryCheck Classes without Inheritance

AnnualSalaryCheck

- checkNumber

- employeeID

- annualSalary

+ setCheckNumber()

+ setEmployeeID()

+ setAnnualSalary()

+ getCheckNumber()

+ getEmployeeID()

+ getAnnualSalary()

+ getGrossPay()

HourlySalaryCheck

- checkNumber

- employeeID

- hoursWorked

- payRate

+ setCheckNumber()

+ setEmployeeID()

+ setHoursWorked()

+ setPayRate()

+ getCheckNumber()

+ getEmployeeID()

+ getHoursWorked()

+ getPayRate()

+ getGrossPay()

Code Duplication without Inheritance

Classes that operate on similar entities often have many identical elements

– Makes maintenance difficult/more work

– Introduces danger of bugs through incorrect maintenance

Code duplication also can carry over introducing problems to the driver classes

Inheritance

When a new class is created, it inherits the instance variables and methods of any
previously defined superclass

This subclass gets its initial features from the direct superclass

An indirect superclass is inherited from two or more levels above in a class hierarchy

The Subclass

The subclass is usually larger than its superclass …

– Because it adds instance variables and methods of its own to those of the
superclass

– Also it is possible to define additions to, or replacements for, inherited superclass
features

It is more specific than the superclass …

– Therefore it has a smaller number of situations in which it can be used

The Superclass

Each superclass exists at the top of a hierarchical relationship with its subclasses

A superclass may have several direct subclasses which inherit its features

A subclass to one superclass may be a superclass to other subclasses

A Payroll Hierarchy

A College Inheritance Hierarchy

“Has a …” vs. “Is a …”

These two phrases that express the nature of relationships and class attributes
between superclasses and subclasses in inheritance:

– A class to its own attributes (“has a”)

– A subclass to the superclass from which it inherits additional attributes (“is a”)

“Has a …” Relationships

“Has a” relationship expresses the attributes (instance variables) within the class
(called composition)

A class “has a(n)” attribute, i.e.

– HourlySalaryCheck “has an” HoursWorked, “has a” Pay Rate

– CommunityMember “has a” First Name, “has a” Last Name, “has an” Address, etc.

“Is a …” Relationships

“Is a” relationship expresses inheritance

Subclass “is a” superclass, i.e.

– AnnualSalaryCheck “is a” PayrollCheck

•And has all the attributes of a PayrollCheck, i.e. if PayrollCheck “has a” Check
Number attribute, AnnualSalaryCheck does also

– Teacher “is a” Faculty

•And has all the attributes of a Faculty member, i.e. if Faculty “has a” Rank
attribute, Teacher does also

Class Libraries (Page 1)

New classes inherit features from an organization's own class library

When developing a new class:

– First try to find a place for it in the existing inheritance hierarchy

– Only if it does not fit into the current class library structure should it be the
beginning of a new inheritance hierarchy segment

Class Libraries (Page 2)

Java API uses inheritance to build its vast library collection of classes

A Payroll Hierarchy

PayrollCheck, AnnualSalaryCheck and HourlySalaryCheck Classes with
Inheritance

AnnualSalaryCheck

annualSalary

setAnnualSalary()

getAnnualSalary()

getGrossPay()

HourlySalaryCheck

hoursWorked

payRate

setHoursWorked()

setPayRate()

getHoursWorked()

getPayRate()

getGrossPay()

PayrollCheck.java (Page 1)

PayrollCheck.java (Page 2)

PayrollCheck.java (Page 3)

PayrollCheck.java (Page 4)

PayrollCheck.java (Page 5)

A PayrollLedger Hierarchy

The Keyword extends (Page 1)

Declares that this class is a direct subclass of the superclass that is named following
the keyword extends

The class inherits all public and protected members (instance variables and methods)
of the superclass

A class may extend (inherit) directly only from one class (its direct superclass)

The Keyword extends (Page 2)

Format:

public class SubClassName extends DirectSuperClassName {

Examples:

public class HourlySalaryCheck extends PayrollCheck {

public class Faculty extends Employee {

Superclass Constructor Call (Page 1)

Subclass constructors always must contain a call to “super” (to its direct superclass
constructor method), or ...

If none is written, the compiler inserts one (an implicit call without parameters)

– Works only if superclass has a constructor without parameters

Superclass Constructor Call (Page 2)

Must be the first statement in the body of the subclass constructor

Example:

public AnnualSalaryCheck(int checkNumber, int employeeID, double annualSalary)

{

super(checkNumber, employeeID);

setAnnualSalary(annualSalary);

}

Calling Superclass Methods

The public members of a superclass are callable from the subclass

Format:

[super.]superclassMethod(parameters)

– Keyword super is not required (and is not standard usage) unless overriding
superclass methods

Examples:

super.toString()

super.getEmployeeID;

getEmployeeID;

Method Overriding (Page 1)

To modify the implementation of an inherited method in a subclass

Example:

public String toString()

{

return super.toString()

+ "\nHours worked: " + getHoursWorked()

+ "\nPay rate: " + getPayRate()

+ "\nGross pay: " + getGrossPay();

}

Method Overriding (Page 2)

Superclass method must be public (accessible)

– A private superclass method cannot be overridden

Methods that are static can be inherited but not overridden

– To access a “hidden” (because a method of the same name exists in the subclass)
static method in a superclass, use the class name, e.g.

SuperclassName.staticMethodName()

The @Override Annotation

Placing @Override before a subclass method denotes that the method must override
the method in the superclass

Format:

@Overrides

public type subclassMethodName()

{ …

Example:

@Overrides

public String toString()

{ …

HourlySalaryCheck.java(Page 1)

HourlySalaryCheck.java(Page 2)

HourlySalaryCheck.java(Page 3)

HourlySalaryCheck.java(Page 4)

Instantiate an HourlyPayrollCheck object

The DecimalFormat Class (Page 1)

Class used to create objects used to format numbers for output

Stored in the java.text package

import java.text.DecimalFormat;

Format:

DecimalFormat objectName = new DecimalFormat("formatString");

– formatString argument is a String of characters that specify how numbers will be
formatted

The DecimalFormat Class (Page 2)

Example 1:

DecimalFormat commaFormat = new DecimalFormat("#,##0");

The String argument "#,##0" specifies that the number will display:

– With commas at the thousands, millions, etc.

•Only if number is 1000 or greater; otherwise printing of leading zeros and
commas are from the 10’s position to the left are suppressed

– Rounded to the nearest integer

The DecimalFormat Class (Page 3)

Example 2:

DecimalFormat twoDecimals = new DecimalFormat("0.00");

The String argument "0.00" specifies that the number will display:

– At least one digit to the left of the decimal point

– Exactly two digits (rounded) to the right of the decimal point

The DecimalFormat Class (Page 4)

The functionality of Examples 1 and 2 can be combined to add commas to the two
decimals rounded:

DecimalFormat grossPayFormat = new DecimalFormat("#,##0.00");

A floating dollar sign could be inserted prior to the rest of the format string:

DecimalFormat grossPayFormat = new DecimalFormat("$#,##0.00");

The format Method

Formats a numeric value according to the DecimalFormat object's format string

Takes one variable/value (either float or double) as its single argument

Format:

decimalFormatObject.format(float/double);

Example:

JOptionPane.showMessageDialog(null, grossPayFormat.format(grossPay));

Driver1.java (Version 2) (Page 1)

Driver1.java (Version 2) (Page 2)

A PayrollLedger Hierarchy

AnnualSalaryCheck.java (Page 1)

AnnualSalaryCheck.java (Page 2)

AnnualSalaryCheck.java (Page 3)

AnnualSalaryCheck.java (Page 4)

AnnualSalaryCheck.java (Page 5)

AnnualSalaryCheck.java (Page 6)

Driver1.java (Page 2)

Extendible Classes (Page 1)

Software is extendible when it can be easily updated and reused to do something that
the original author never imagined

Extendibility is enhanced by:

– Loose coupling—few connections

– Class cohesion —classes with one single, well defined entity

– Responsibility-driven design in which classes are responsible for manipulating their
own data

Extendible Classes (Page 2)

When developing a new class, look to find a place where it can extend another class
in the existing inheritance hierarchy

Sometime superclasses in an inheritance hierarchy only serve to support subclasses

– Such superclasses are called abstract classes (never have objects instantiated from
them)

A PayrollLedger Hierarchy

MiniQuiz

Define a new class ConsultantCheck that extends from PayrollCheck for consultants
who receive a check based on a one-time payment

Consultant Check UML Diagram

MiniQuiz (Page 1)

A single data field payment of type double stores the value of the one-time payment

The no-argument constructor passes values for checkNumber, employeeID and
payment to the overloaded constructor

The ConsultantCheck Class (Page 1)

public class ConsultantCheck extends PayrollCheck

{

private double payment;

public ConsultantCheck()

{

// Implicit call to superclass Payrol

this(0, 0, 0.0);

}

The ConsultantCheck Class (Image page 1)

MiniQuiz (Page 2)

The int, int, double constructor passes:

– checkNumber and employeeID to the superclass constructor

– payment to the set method

The ConsultantCheck Class (Page 2)

public ConsultantCheck(int checkNumber,

int employeeID,

double payment)

{

// Explicit call to superclass PayrollChe

super(checkNumber, employeeID);

setPayment(payment);

}

The ConsultantCheck Class (Image page 2)

MiniQuiz (Page 3)

The set method assigns the parameter to the payment data field if that parameter is
zero (0) or greater

– Value zero (0) indicates that the payment field is empty

The ConsultantCheck Class (Page 3)

public void setPayment(double payment)

{

if (payment >= 0)

{

this.payment = payment;

}

}

The ConsultantCheck Class (Image page 3)

MiniQuiz (Page 4)

The get method returns the value of the payment data field

The getGrossPay() method returns the value of the getPayment() method

The ConsultantCheck Class (Page 4)

public double getPayment()

{

return payment;

}

public double getGrossPay()

{

return getPayment();

}

}

The ConsultantCheck Class (Image page 4)

MiniQuiz (Page 5)

The toString() method returns:

– A formatted String representation of the grossPay data field formatted to dollars
and cents including text labels

– Preceded by the checkNumber and employeeID data fields from a call to toString()
method of superclass PayrollCheck

The ConsultantCheck Class (Page 5)

public String toString()

{

return super.toString()

+ "\nPayment: "

+ dollarsCents.format(

getGrossPay());

}

}

The ConsultantCheck Class (Image page 5)

Driver1.java (Page 2)

The Class Object (Page 1)

The superclass of all classes (either direct or indirect) is Object from the Java API …

– If a class definition does not explicitly extend another class, it extends Object
directly

The following two class headers effectively are identical:

public class PayrollCheck {

public class PayrollCheck extends Object

{

The Class Object (Page 2)

As a result all classes inherit eleven (11) public methods from Object including:

– toString(), equals() and hashCode()

Additionally classes from the Java API use inheritance extensively and extend also
from class Object (directly or indirectly)

A PayrollLedger Hierarchy

PayrollCheck.java (Page 1)

The toString() Method of Class Object

Method toString() is a member of class Object that returns a String representation of
an object

All classes inherit the toString() method either directly or indirectly from Object

– May be called or overridden

Returns the class name of which the object is an instance and a hash code (start
address where the object is stored in memory in hexadecimal), e.g.

– HourlySalaryCheck@15037e5

PayrollCheck.java (Object.toString() —Page 5)

Advantages of Inheritance (so far)

Avoiding code duplication

Code reuse

Easier maintenance

Extendibility

Subtyping (Page 1)

Types defined by a subclass definition actually are subtypes of their superclass

If HourlySalaryCheck and AnnualSalaryCheck classes are extensions of class
PayrollCheck:

– The superclass object:

PayrollCheck pay;

– Can be instantiated by calling its subtype constructor:

pay = new AnnualSalaryCheck();

– Or in a single statement:

PayrollCheck pay = new AnnualSalaryCheck();

Subtyping (Page 2)

Now the subtyped object can differentiate between getGrossPay() methods of
HourlySalaryCheck and AnnualSalaryCheck classes when called:

JOptionPane.showMessageDialog(null, pay.getGrossPay());

– This is an example of polymorphism (meaning “many shapes” or “many forms”)

– In this case the method behavior changes based upon which constructor was used
to instantiate it

Driver2.java (Page 1)

Driver2.java (Page 2)

The ArrayList Class (Page 1)

Used to create a list of items in a flexible-sized collection

The capacity of an ArrayList object is initialized to start at ten (10) elements but
grows as items are added to it

The ArrayList Class (Page 2)

The class has a whole series of methods of its own which can be used to
automatically manipulate objects instantiated from it

Found in the java.util package of the Java API library:

import java.util.ArrayList;

The ArrayList Class (Page 3)

Format to declare an ArrayList object:

ArrayList<type> objectName;

Example:

private ArrayList<String> departmentList;

– ArrayList is a generic class requiring a subtype specified as a parameter

– Enclosed in <chevrons>, e.g. <angle brackets>

– The example data field above departmentList is called an “ArrayList of Strings”

Instantiating ArrayList Objects (Page 1)

Similar syntax to that which is used when instantiating objects …

– Includes the second type parameter enclosed in <chevrons>

Format:

objectName = new ArrayList<type>();

Example:

departmentList = new ArrayList<String>();

Instantiating ArrayList Objects (Page 2)

Format to declare and instantiate the object in a single statement:

ArrayList<type> objectName = new ArrayList<type>();

Example:

ArrayList<String> departmentList = new ArrayList<String>();

The add() Method for ArrayList

Appends this element (object) to the end of the ArrayList collection

Format:

arrayListObject.add(object);

– The object represents the value added as a new element to the ArrayList collection

Example:

departmentList.add("COMPUTER");

The size() Method for ArrayList

Returns an int which is the number of elements in the ArrayList collection

Format:

arrayListObject.size()

Example:

JOptionPane.showMessageDialog(null, departmentList.size());

The get() Method for ArrayList

Retrieves an individual element from the specified position in ArrayList collection

Format:

arrayListObject.get(index)

– The index is an int between zero (0) and one less than the number of items in the
ArrayList

Example:

JOptionPane.showMessageDialog(null, departmentList.get(index));

– The element is not removed from the collection

The indexOf() Method for ArrayList (Page 1)

Searches for first occurrence of the object argument in the ArrayList collection—tests
for an equal to (==) condition

The method returns either :

– An int which is the index representing its position in the ArrayList collection

– Or -1 if the search criteria value is not found

The indexOf() Method for ArrayList (Page 2)

Format:

arrayListObject.indexOf(object)

Example:

index = departmentList.indexOf("COMPUTER");

The remove() Method for ArrayList (Page 1)

Deletes an individual element from the specified position in ArrayList collection

All elements after the deleted item move up one element to fill the gap

The remove() Method for ArrayList (Page 2)

Format:

arrayListObject.remove(index);

The index is an integer between zero (0) and one less than the number of elements
in the ArrayList

Example:

departmentList.remove(index);

MiniQuiz No. 2 (Page 1)

Open the “college” project and create a new class Alum that extends from
CommunityMember

There are two data fields:

– gradYear—the year the alumnus or alumna graduated

– degree—the degree granted to the alumnus or alumna

An ArrayList of Strings stores valid degrees including “B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”

Alum.java (Page 1)

MiniQuiz No. 2 (Page 2)

The constructor:

– Takes two Strings for firstName and lastName, an int for gradYear and a String for
degree

– Passes firstName and lastName to the superclass constructor

– Instantiates the ArrayList and assigns the values (“B.A.”, “B.S.”, “M.A.”, “M.S.” and
“PH.D”)

– Calls the set methods for gradYear and degree

Alum.java (Page 2)

MiniQuiz No. 2 (Page 3)

The set method for gradYear updates the data field if the parameter is between 1960
and 2013, or is zero (0) meaning is not set

The set method for degree updates the data field if the parameter is in the degrees
ArrayList

Include get methods for gradYear and degree

The toString() method links to the toString() of CommunityMember and includes
labels before the return values of the two get methods

Alum.java (Page 3)

Alum.java (Page 4)

Alum.java (Page 5)

Alum.java (Page 6)

1

2

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

